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Preliminaries

Dates, times

Before we start:
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Preliminaries

Recommended reading

Useful textbooks

1. Benenti, Casati, Strini
Principles of Quantum Computation and Information, I, II
(World Scientific, 2004)

2. Kaye, LaFlamme, Mosca
An Introduction to Quantum Computing (OUP, 2007)

3. Nielsen & Chuang
Quantum Computing and Quantum Information (CUP,
2000)
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Preliminaries

Recommended reading

Some weblinks:

On the VLE:

Course notes, lecture slides, practicals, etc.

Complex numbers tutorial.

Matrices tutorial.

http://www-users.cs.york.ac.uk/∼schmuel/comp/comp.html 
Sam Braunstein’s quantum computing tutorial.
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Information is Physical

Classical information and its limits

Information is physical

I how we process information depends on the laws of
physics.

I A computer may store bits as charge on a capacitor:

I A charged capacitor may use roughly 105 electrons to
represent logical 1.

I An discharged capacitor represents logical 0.
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Information is Physical

Classical information and its limits

Everything is getting smaller
Moore’s Law

1. Moore (1953) “The number of transistors on a chip doubles
every 18 months or so”

2. Moore (2005) “It can’t continue forever... we’re
approaching the size of atoms”.
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Information is Physical

Classical information and its limits

Extrapolating this graph

Note the logarithmic scale on this graph.

The number of electrons used to represent a single bit halves
every 18 months or so.

Assuming this continues ...

Sometime around 2015 - 2020
Consumer electronics will be storing bits using single electrons.

I Is this a brick wall, for Moore’s law?
I Are the laws of physics the same, at this scale?
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From classical to quantum

from BITs to QUBITs

At the scale of single electrons ...

I The laws of physics look very different.
I Computing at the atomic scale needs quantum mechanics.
I This is

1. A challenge.
2. A great opportunity.

The different physics that applies also allows for
fantastically more efficient computation.
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The quantum-mechanical world

What’s different ?

A common device is the beamsplitter

This is for light, but similar devices exist (for example) for electrons.
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The quantum-mechanical world

What’s different ?

This is not just a theoretical device:

The building block of many optics experiments

Available online at around $6 per beamsplitter ...
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The quantum-mechanical world

What’s different ?

Combining beamsplitters

By choosing the right length of paths, we can introduce
constructive interference.

Light is always observed at the detector shown.
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The quantum-mechanical world

What’s different ?

Treating light as photons

Light is emitted and absorbed in single ‘packets’.

These are called photons.

I We can treat the light as “a stream of photons”.
I ... or even do ‘single-photon’ experiments.

In this setting:
How can we tell ‘which path’ a photon travels?
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The quantum-mechanical world

What’s different ?

Simple solution — block one path!

What does this tell us ??
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The quantum-mechanical world

What’s different ?

Each photon ‘explores all possible paths’

We cannot make sense of this by assuming:

“at the beamsplitter, a photon (randomly)
chooses either one path or the other”

If a photon ‘takes the upper path’

I How can blocking the lower path affect it?
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The quantum-mechanical world

What’s different ?

The only possible answer:

Each photon somehow ‘takes both paths’.

The same holds for
I electrons,
I atoms,
I any ‘particle’.

Any attempt to ‘find out which path is taken’
. . . changes the result of the experiment.

Yes, there are two paths you can go by, but in the long run, you just can’t tell which one you’re on!
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The quantum-mechanical world

What’s different ?

How to model this ?
Let us write the two paths as |path1〉 and |path2〉.

On the quantum scale, we:
I Treat these as orthogonal vectors in a Hilbert space.
I and so allow for superpositions

α|path1〉+ β|path2〉
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the quantum computing world

from bits to qubits

What does this have to do with computation?

Treat the choice of path (or any other ‘quantum property’) as
logical 1 / 0.

I Bits have been replaced by quantum bits, or qubits.
I What are the implications of this for computing?
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the quantum computing world

from bits to qubits

Real computers have more than one bit !
Two qubits are represented by 4 orthogonal vectors,

|00〉 , |01〉 , |10〉 , |11〉

This allows superpositions such as

α|00〉+ β|01〉+ γ|10〉+ δ|11〉

Giving many ‘strange phenomena’:
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the quantum computing world

from bits to qubits

How much ‘information’ can qubits carry?

I For k qubits, we can form a superposition of all possible
values:

2k−1∑

j=0

αj |j〉

I For k classical bits, we certainly cannot!

Simulating a quantum computer using a classical computer
appears to be very hard!
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the quantum computing world

from bits to qubits

Is this a bug, or a feature?

Given 300 qubits, we can form a superposition of 2300 values.

... this is more than the number of particles in the universe.

Can we use this to do ‘massively powerful computing?

I There are a number of complicating factors!
I But also, some very interesting quantum computer

programs.
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the quantum computing world

from bits to qubits

A final comment

The strong Church-Turing thesis
“A (probabilistic) Turing machine can efficiently simulate any
physically reasonable computer.”

If quantum computers cannot be simulated efficiently by
classical computers, this needs to be modified.

Quantum Turing machines, anyone ??.
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Quantum Computation

Lecture 2

Sam Braunstein

com
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Linear optics circuits

The beamsplitter

Beamsplitters revisited

We will:

1. Draw ‘circuit-like’ diagrams, from left to right.
2. Treat the upper and lower paths as ‘logical 0 / 1’.
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Linear optics circuits

The beamsplitter

A Schematic:

I A particle definitely in
the upper branch is
labelled |0〉.

I A particle definitely in
the lower branch is
labelled |1〉.

I preparation is shown by a thick line.
I measurement is shown as :=;<0/1
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Linear optics circuits

The beamsplitter

The action of the beamsplitter

Let us introduce particles into the upper branch ...
What do we observe, as output?

The output is randomly in either the upper, or lower, branch

Introducing particles into the lower branch ...
What do we observe, as output?

Exactly the same output. The output is
equally likely to be in either branch
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Linear optics circuits

The beamsplitter

Is this simply a random choice?

The simplest explanation
“The beamsplitter acts as a
classical coin-flip, randomly
sending the photon one way
or the other”

The simplest explanation is, of course, wrong!
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Linear optics circuits

The beamsplitter

Why this is not random choice

Add in a second beamsplitter

The ‘random choice’ explanation would predict a 50 / 50
distribution.
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Linear optics circuits

The beamsplitter

To understand what is going on ...

Add in a transparent ‘delay’ on the lower path:

The probabilities become:
I prob. = sin2(ϕ

2

)
particle is observed in upper path.

I prob. = cos2(ϕ
2

)
particle is observed in lower path.



QUCO — Lecture 2

Linear optics circuits

The beamsplitter

A new theory:

The particle can exist in a complex superposition of the two
paths

How to analyse this experiment?
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Linear optics circuits

Analysing the beamsplitter

One step at a time:

A particle is introduced in the upper path:
It is in state |0〉.

After passing through the beamsplitter:
It is in an equal superposition i√

2
|0〉+ 1√

2
|1〉.

Note: the reflected part picks up a complex
factor i .
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Linear optics circuits

Analysing the beamsplitter

One step at a time (continued) :

The ‘delay’ is applied to the bottom branch
only:
Resulting in the state i√

2
|0〉+ eiϕ√

2
|1〉.

Again passing through the beamsplitter:
Remember: a factor of i is applied to the
reflected path.

i√
2
|0〉+ eiϕ√

2
|1〉

7→
i√
2

(
i√
2
|0〉+ 1√

2
|1〉
)
+ eiϕ√

2

(
i√
2
|1〉+ 1√

2
|0〉
)
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Linear optics circuits

Analysing the beamsplitter

Rearranging and simplifying

Final state is:

i√

(

i√
2
|0〉+ 1√

2
|1〉
)
+

eiϕ
√

2

(
i√
2
|1〉+

1√
2
|0〉
)

=
(eiϕ − 1)

2
|0〉+ i(eiφ + 1)

2
|1〉

= ei ϕ2
ei ϕ2 − e−i ϕ2

2

)
|0〉 + iei ϕ2

ei ϕ2 + e−i ϕ2

2

)
|1〉

(

2

(
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Linear optics circuits

Analysing the beamsplitter

Further rearranging:

Basic trigonometric identities:

1. cos(θ) = 1
2(e

iθ + e−iθ)

2. sin(θ) = −i
2 (eiθ − e−iθ)

The final state is then:

−iei ϕ2 sin
(ϕ

2

)
|0〉 + iei ϕ2 cos

(ϕ
2

)
|1〉
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Linear optics circuits

Analysing the beamsplitter

What about the measurement / probabilities ?

A general principle
The probability for finding the particle in a certain branch
is the square of the modulus of the weight (or amplitude) of that
branch.
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Linear optics circuits

Analysing the beamsplitter

Measurement continued

If a photon in state α0|0〉+ α1|1〉 is measured, then

I The probability of observing |0〉 is |α0|2

I The probability of observing |1〉 is |α1|2

Probabilities sum to 1

|α0|2 + |α1|2 = 1

This is why the 1√
2

weights for the beamsplitter give a 50/50
probability for either path.
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Fundamental Assumptions

Linearity

Some key assumptions:

Operations are linear

I We know how the beamsplitter behaves on |0〉,

|0〉 7→ i√
2
|0〉+ 1√

2
|1〉

I We know how the beamsplitter behaves on |1〉,

|1〉 7→ 1√
2
|0〉+ i√

2
|1〉

Therefore, we know how it behaves on α|0〉+ β|1〉.
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Fundamental Assumptions

Linearity

Linearity continued ...

In general, L is linear when: L(α|x〉+β|y〉) = α.L(|x〉)+β.L(|y〉)

For the beamsplitter:

α|0〉+ β|1〉 // α
(

i√
2
|0〉+ 1√

2
|1〉
)

+ β
(

1√
2
|0〉+ i√

2
|1〉
)

=
(
α i√

2
+ β 1√

2

)
|0〉 +

(
α 1√

2
+ β i√

2

)
|1〉

= α′|0〉+ β′|1〉
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Fundamental Assumptions

Unitarity

Not only linear but also unitary

The beamsplitter maps α|0〉+ β|1〉 to α′|0〉+ β′|1〉.
From the interpretation as probabilities

|α|2 + |β|2 = 1

We need (and can check this is true) that:

|α′|2 + |β′|2 = 1

Any linear operation α|0〉+ β|1〉 L // α′|0〉+ β′|1〉 satisfying
this condition is called unitary.
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Matrix formalism

qubits and operations

Using matrix notation

Let us

I Denote |0〉 and |1〉 by the vectors
(

1
0

)
and

(
0
1

)
.

I The superposition α|0〉+ β|1〉 is then

α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)

I Arbitrary linear operations are matrices U =

(
u00 u01
u10 u11

)
,

so (
α′

β′

)
=

(
u00 u01
u10 u11

)(
α
β

)
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Matrix formalism

The conjugate-transpose

A useful operation

A very important operation is the conjugate-transpose,
denoted U†.

(
u00 u01
u10 u11

)†
=

(
u∗

00 u∗
10

u∗
01 u∗

11

)

(Where z∗ is the complex conjugate).

In particular, for a vector (e.g. a single qubit),

(
α
β

)†
=
(
α∗ β∗

)



QUCO — Lecture 2

Matrix formalism

The conjugate-transpose

The ‘probabilities’ condition

Given a qubit
(
α
β

)
, the interpretation as probabilities states

|α|2 + |β|2 = 1 =

(
α
β

)†(
α
β

)
= 1

Given a physical operation
(
α′

β′

)
= U

(
α
β

)
, we also require

(
α′

β′

)†(
α′

β′

)
= 1
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Matrix formalism

The conjugate-transpose

Some simple manipulation:

(
α′

β′

)†
=

[
U
(
α
β

)]†
=

(
α
β

)†
U† =

(
α
β

)†( u∗
00 u∗

10
u∗

01 u∗
11

)

and we already know that
(
α′

β′

)
=

(
u00 u01
u10 u11

)(
α
β

)

Therefore,
(
α′

β′

)†(
α′

β′

)
=

(
α
β

)†
U†U

(
α
β

)
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Matrix formalism

unitarity and the conjugate transpose

Unitarity via matrices

For an operation U to be unitary, we need

(
α
β

)†
U†U

(
α
β

)
= 1

for all
(
α
β

)†(
α
β

)
= 1.

A characterisation of unitarity
This states that U†U is the identity.

(
u∗

00 u∗
10

u∗
01 u∗

11

)(
u00 u01
u10 u11

)
=

(
1 0
0 1

)
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Matrix formalism

unitarity and the conjugate transpose

The beamsplitter experiment

The beamsplitter gives a unitary matrix: 1√
2

(
i 1
1 i

)
.

The phase delay gives another unitary:
(

1 0
0 eiϕ

)
.

The experiment shown then becomes:
(
α′

β′

)
=

1√
2

(
i 1
1 i

)(
1 0
0 eiϕ

)
1√
2

(
i 1
1 i

)(
1
0

)
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Matrix formalism

unitarity and the conjugate transpose

Important:
I The circuit reads from

left to right.
I The maths reads from

right to left.

Question: Why is this?
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Quantum Circuits

From quantum optics to quantum circuits

So far ...

We have represented a qubit by two lines.

A more compact notation
We will now ...

Represent a qubit by a single line

α|0〉+ β|1〉 //
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Quantum Circuits

The ‘quantum circuit’ formalism
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Quantum Circuits

Some quantum ‘logic gates’

Another way of creating ‘equal superpositions’.

The Hadamard gate

H

This represents the matrix

H =
1√
2

(
1 1
1 −1

)

This is more common in QC than the beamsplitter.
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Quantum Circuits

Another QC logic gate

We have also seen the ‘phase delay’,

This more commonly called the

phase gate

ϕ

This represents the matrix
(

1 0
0 eiϕ

)
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Quantum Circuits

Composing QC logic gates
An arrangement like1 the interferometer becomes

|0〉 H ϕ H

This is shorthand for

1√
2

(
1 1
1 −1

)(
1 0
0 eiφ

)
1√
2

(
1 1
1 −1

)(
1
0

)

Remember!
I Circuits read from left to right.
I Equations read from right to left.
1

using the Hadamard gate, rather than the beamsplitter
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Multiple qubits, and tensor products

2-qubit systems

What happens with more than one qubit ?

Consider a 2-qubit system:

I First qubit in state α0|0〉+ α1|1〉
I Second qubit in state β0|0〉+ β1|1〉

A 2-qubit system ... has 4 basis states
These are:

|0〉|0〉 = |00〉 |0〉|1〉 = |01〉

|1〉|0〉 = |10〉 |1〉|1〉 = |11〉
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Multiple qubits, and tensor products

tensor products and entanglement

representing multi-qubit systems (I)

The 2-qubit system:

I First qubit in state α0|0〉+ α1|1〉
I Second qubit in state β0|0〉+ β1|1〉

has the state (α0|0〉+ α1|1〉)(β0|0〉+ β1|1〉) =

α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉
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Multiple qubits, and tensor products

tensor products and entanglement

representing multi-qubit systems (II)

In matrix notation:

(
α0
α1

)
⊗
(
β0
β1

)
=




α0β0
α0β1
α1β0
α1β1


 =




α0

(
β0
β1

)

α1

(
β0
β1

)



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Multiple qubits, and tensor products

tensor products and entanglement

General superpositions

In general, a 2 qubit system can be in any superposition:

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉
satisfying ∑

jk

|αjk |2 = 1

Measuring 2-qubit systems
when measuring both qubits:

The probability of observing |xy〉 is exactly |αxy |2.
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Multiple qubits, and tensor products

tensor products and entanglement

... and finally!

Not all 2 qubit states

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

can be written as the tensor product of single qubits.

Such states are called entangled.
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Quantum Computation

Lecture 3

Sam Braunstein
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Tensor products and multi-qubit systems

Compound systems

Tensors of matrices
Consider a 2-qubit system:

I First qubit in state α0|0〉+ α1|1〉
I Second qubit in state β0|0〉+ β1|1〉

The compound system has the following state:

(
α0
α1

)
⊗
(
β0
β1

)
=




α0β0
α0β1
α1β0
α1β1


 =




α0

(
β0
β1

)

α1

(
β0
β1

)



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Tensor products and multi-qubit systems

Compound systems

Applying operations to 2 qubit systems

We can apply separate unitaries to each qubit:

α0 |0〉+ α1 |1〉 A α′
0 |0〉+ α′

1 |1〉

β0 |0〉+ β1 |1〉 B β′0 |0〉+ β′1 |1〉

The (general) tensor product

A ⊗ B =

(
a00 a01
a10 a11

)
⊗
(

b00 b01
b10 b11

)
=

(
a00B a01B
a10B a11B

)
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Tensor products and multi-qubit systems

Compound systems

The general tensor product

A ⊗ B =




a00

(
b00 b01
b10 b11

)
a01

(
b00 b01
b10 b11

)

a10

(
b00 b01
b10 b11

)
a11

(
b00 b01
b10 b11

)




In full:

A ⊗ B =




a00b00 a00b01 a01b00 a01b01

a00b10 a00b11 a01b10 a01b11

a10b00 a10b01 a11b00 a11b01

a10b10 a10b11 a11b10 a11b11



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Tensor products and multi-qubit systems

Compound systems

An important property

The following circuits are equivalent:

v A

w B

v
A ⊗ B

w

Mathematically: (Av)⊗ (Bw) = (A ⊗ B)(v ⊗ w).

As matrices:
[(

a00 a01
a10 a11

)(
v0
v1

)]
⊗
[(

b00 b01
b10 b11

)(
w0
w1

)]

=

[(
a00 a01
a10 a11

)
⊗
(

b00 b01
b10 b11

)][(
v0
v1

)
⊗
(

w0
w1

)]
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Tensor products and multi-qubit systems

Compound systems

When qubits interact ...

We want QM logic gates with more than one input!

I We wish to see interaction between qubits

I ... similar to classical circuit diagrams.
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Classical circuits

Boolean circuits

(Classical) logic gates
A logic gate is a function from n bits to m bits, such as

Logic gates may be glued together to create circuits:

These compute Boolean functions.



QUCO — Lecture 3

Classical circuits

Universality

Universal sets of gates

A set B of logic gates is universal when:

“For any Boolean function F , there is a circuit made
up of gates from B, that computes F ”.

The question:
How to find sets of logic gates that are universal?
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Classical circuits

Universality

Universal, and non-universal sets of gates



QUCO — Lecture 3

Classical circuits

Universality

Translating between circuits

I Let A be any set of logic gates.

I Let B be a universal set of logic gates.

Any circuit made up of gates from A ...

... can be efficiently translated into
a circuit made up of gates from B.

How to do this ??
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Classical circuits

Universality

Translating between circuits (cont.)

How to do this ...
I Each gate in A can be realised as a circuit in B.

I Use these circuits, instead of gates in A,
to construct the original circuit.

This process is efficient.
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Circuits quantum and classical

QM and Classical logic gates

Reversibility and Unitarity

Quantum processes are reversible

I Apart from measurement, QM processes are unitary.

I This implies reversibility. A unitary U has an inverse, U†.

Classical logic gates are certainly not reversible!

Given a ∧ b, we cannot find
the values a and b separately.
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Circuits quantum and classical

The problem with reversibility

From irreversible to reversible computation

Landauer, Fredkin, & Toffoli showed how to:
Model irreversible circuits with reversible ones.

Each logic gate is replaced by a reversible one, where some
output is simply thrown away.

Irreversible Circuit

Input1

FInput2 Output

Input3

Reversible Version

Input1

G
JUNK

Input2 Output

Input3 JUNK
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Circuits quantum and classical

The problem with reversibility

Reversible versions of gates

The exclusive-or gate:
Input Output

0 0 0 = 0 ⊕ 0
0 1 1 = 0 ⊕ 1
1 0 1 = 1 ⊕ 0
1 1 0 =1 ⊕ 1

The ‘controlled-not’ gate

a • a
b �������� a XOR b

Input Output

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0
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Circuits quantum and classical

The problem with reversibility

The inverse of the CNOT gate

Composing two CNOT gates

a • • a
b �������� �������� a XOR (a XOR b) = b

The CNOT gate is its own inverse
... hence the symmetric notation.

A • ‘JUNK’
B �������� A XOR B



QUCO — Lecture 3

Circuits quantum and classical

The problem with reversibility

The ‘controlled-controlled-not’ gate

a • a
b • b
c �������� (a ∧ b)⊕ c

“Bit c is flipped when
both a and b are 1.”

This gate is again its own inverse:
a • • a
b • • b
c �������� �������� c

Hence the symmetric notation!
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Circuits quantum and classical

The problem with reversibility

Simulating the AND gate

The CCNOT gate can simulate the AND gate:

a • JUNK
b • JUNK
0 �������� (a ∧ b)

We simply ensure that the third input bit is 0.
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Circuits quantum and classical

Universal reversible gates

A universal reversible gate set

Recall
I The NOT gate is logically reversible.

I The AND gate can be simulated by
the (reversible) CCNOT gate.

I The set {AND,NOT} is a universal gate set.
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Circuits quantum and classical

Universal reversible gates

A simple example
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Circuits quantum and classical

Garbage collection

What about all that junk ??

I Do we need a couple of extra bits for each time a logic
gate is applied??

I If so ... how many logic gates are applied each second in a
1.2GHz computer??

I Classical computers dispose of this junk as heat.
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Circuits quantum and classical

Garbage collection

Garbage collection in reversible computing

Bennett showed how to get rid of junk by ‘uncomputing’.

The basic idea:
x

Compute

x

Copy

x

Uncompute

x

0 f (x) f (x) 0

0 Junk Junk 0

0 0 f (x) f (x)

This leaves the input, the output, and no junk !
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Circuits quantum and classical

Garbage collection

The complexity of reversible simulation

An irreversible circuit with

I Space S

I Time T

can thus be simulated by a reversible circuit with

I Space O(S + T )

I Time O(T )
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Circuits quantum and classical

Garbage collection

Other complexity results

Bennett later showed how an irreversible circuit with

I Space S

I Time T

can be simulated by a reversible circuit with

I Space O(S log(T ))

I Time O(T 1+ε)

for some constant ε > 0.
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Circuits quantum and classical

Circuits for garbage collection

Copying using the CNOT gate

The CNOT gate can be used to copy an input:

a • a

0 �������� a
From 1 copy of a, this
produces 2 copies of a.

We can use this to give a circuit
for Bennett’s garbage collection:
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Circuits for garbage collection

Bennett’s garbage collection

Consider a circuit, made from
reversible components:

x1

F

x1

x2 x2

x3 x3

0 y1

0 y2

0 Junk

Take the Mirror Image,
to get another circuit:

x1

F†

x1

x2 x2

x3 x3

y1 0
y2 0

Junk 0
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Circuits quantum and classical

Circuits for garbage collection

Bennett’s garbage collection (II)
Now compose the two, with the ‘fan-out’ step in the middle:

x1

F F†

x1

x2 x2

x3 x3

0 • 0
0 • 0
0 0
0 �������� y1

0 �������� y2

Given any Boolean circuit, we can design an
efficient reversible version.
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Quantum Computation

Lecture 4

Sam Braunstein
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Dirac’s Bra-Ket formalism

Brackets and probabilities

Bras and Kets

Consider a state

I |ψ〉 = α0|0〉+ α1|1〉 =

(
α0
α1

)

We use 〈ψ| = α∗
0〈0|+ α∗

1〈1| to denote the adjoint

|ψ〉† =
(
α∗

0 α∗
1
)

The vectors 〈ψ| and |ψ〉 are called bra and ket respectively.
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Dirac’s Bra-Ket formalism

Brackets and probabilities

The Bra-Ket

Composing a Bra and a Ket
Notice that

〈ψ| · |ψ〉 =
(
α∗

0 α∗
1
)( α0

α1

)
= |α0|2 + |α1|2 = 1

This only works because

〈i | · |j〉 =





1 i = j

0 i 6= j
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Dirac’s Bra-Ket formalism

Brackets and probabilities

The bra-ket of distinct vectors

Now consider two vectors

I |ψ〉 = α0|0〉+ α1|1〉 =

(
α0
α1

)

I |φ〉 = β0|0〉+ β1|1〉 =

(
β0
β1

)

How do we interpret:

〈φ| · |ψ〉 =
(
β∗0 β∗1

)( α0
α1

)
= β∗0α0 + β∗1α1

This is the “overlap” between states |φ〉 and |ψ〉
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Dirac’s Bra-Ket formalism

Brackets and probabilities

Brackets and probabilities

Recall that ...

The prob. of finding |ψ〉 = α0|0〉+ α1|1〉 in state |0〉 is |α0|2.

This is simply |α0|2 = |〈0| · |ψ〉|2

A general principle:
Given a state |ψ〉, the probability of finding it in state |φ〉 is

|〈φ|ψ〉|2

Note - distinct outcomes are orthogonal!
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Dirac’s Bra-Ket formalism

Brackets and unitaries

Other uses for Bras and Kets

A unitary operation U =

(
U00 U01
U10 U11

)

may be written as a sum of bras and kets:

U = U00|0〉〈0|+ U01|0〉〈1|+ U10|1〉〈0|+ U11|1〉〈1|

Writing this out in full: U =

U00

(
1 0
0 0

)
+ U01

(
0 1
0 0

)

U10

(
0 0
1 0

)
+ U11

(
0 0
0 1

)
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Dirac’s Bra-Ket formalism

Converting between matrices and basis vectors

Finding matrices ...

Given

I A unitary operation U,
I a description of U on basis vectors |0〉 and |1〉.

How do we write down the matrix for U ?
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Dirac’s Bra-Ket formalism

Converting between matrices and basis vectors

Matrices from basis vectors
Let U be a unitary operation on single qubits:

U =

(
α β
γ δ

)

The Computational Basis, in matrix form, is

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

Simple calculation:

(
α β
γ δ

)(
1
0

)
=

(
α
γ

)
,

(
α β
γ δ

)(
0
1

)
=

(
β
δ

)



QUCO — Lecture 4
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Converting between matrices and basis vectors

Translating into kets:

(
α β
γ δ

)(
1
0

)
=

(
α
γ

)
⇔ U|0〉 = α|0〉+ γ|1〉

(
α β
γ δ

)(
0
1

)
=

(
β
δ

)
⇔ U|1〉 = β|0〉+ δ|1〉

I The action on |0〉 =
(

1
0

)
gives the first column of U.

I The action on |1〉 =
(

0
1

)
gives the second column U.
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Converting between matrices and basis vectors

The general case

Given a matrix U =




U00 U01 U02 . . . U0N
U10 U11 U12 . . . U1N
U20 U21 U22 . . . U0N

...
...

...
. . .

...
UN0 UN1 UN2 . . . UNN




We may identify the columns by

U




1
0
0
0
...




=




U00
U10
U20

...
UN1



, U




0
1
0
0
...




=




U01
U11
U21

...
UN1



, U




0
0
1
0
...




=




U02
U12
U22

...
UN2



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Converting between matrices and basis vectors

Exercises:

1. Prove this for general matrices,
using the definition of matrix multiplication.

Simple, but kind of tedious!

2. Prove this for operations on qubits,
using orthogonality

〈i |j〉 =

{
0 i 6= j
1 i = j

More involved, but very interesting!
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The QM gate toolbox

1 qubit operations

Single qubit operations – the Pauli gates

I The NOT gate

X =

(
0 1
1 0

)
= |0〉〈1|+ |1〉〈0|

I The Phase Flip

Z =

(
1 0
0 −1

)
= |0〉〈0| − |1〉〈1|

I The Y Gate

Y =

(
0 −i
i 0

)
= i |1〉〈0| − i |0〉〈1|
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The QM gate toolbox

1 qubit operations

More Single-qubit gates
I The Amplitude-Rotation gate

Aθ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)

I The Phase-Rotation gate

Rk =

(
1 0

0 e
2πi
2k

)

I The Hadamard gate

H =
1√
2

(
1 1
1 −1

)



QUCO — Lecture 4

The QM gate toolbox

2-qubit operations

Two qubit operations

Consider a 1-qubit unitary U =

(
U00 U01
U10 U11

)
.

Make a (trivial) 2 qubit gate:

U

I Do nothing to the first qubit.
I Apply U to the second qubit.

What does this do to basis states??



QUCO — Lecture 4

The QM gate toolbox

2-qubit operations

A 2-qubit operation

On basis states:

U

I |0〉|0〉 7→ |0〉U(|0〉)
I |0〉|1〉 7→ |0〉U(|1〉)
I |1〉|0〉 7→ |1〉U(|0〉)
I |1〉|1〉 7→ |1〉U(|1〉)

The corresponding 4 × 4 matrix is

(
1 0
0 1

)
⊗ U =




U00 U01 0 0
U10 U11 0 0
0 0 U00 U01
0 0 U10 U11



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2-qubit operations

The ‘controlled-U gate’

One qubit can act as a ‘control bit’:

•

U

I The first qubit does not change.

I For the second qubit:
I If the first qubit is 0〉,

do nothing.

I If the first qubit is |1〉,
apply U.

What does this do to basis states??
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2-qubit operations

On the computational basis:

U is given by:

U =

(
U00 U01
U10 U11

)

Controlled U gives

I |0〉|0〉 7→ |0〉|0〉
I |0〉|1〉 7→ |0〉|1〉
I |1〉|0〉 7→ |1〉(U00|0〉+ U10|1〉)
I |1〉|1〉 7→ |1〉(U01|0〉+ U11|1〉)

Finding the matrix for CU

1. Write CU|00〉 , CU|01〉 , CU|10〉 , CU|11〉
as vectors.

2. This gives the columns of the matrix for CU.
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The QM gate toolbox

2-qubit operations

Finding CU from the bra-ket description

CU|00〉 =




1
0
0
0


 CU|01〉 =




0
1
0
0




CU|10〉 =




0
0

U00
U10


 CU|11〉 =




0
0

U01
U11




This gives the columns of CU.
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2-qubit operations

Finding CU from the bra-ket description

Bringing these together,

CU =




1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11




(Trivial) Exercise: prove this is unitary.
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2-qubit operations

The controlled-NOT gate

A special case is the controlled-NOT gate:

•

X
more often drawn as

•
��������

This has the following matrix:

CX =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



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The QM gate toolbox

Universal QM gate sets

Universal quantum gate sets

Theorem:
I Any unitary operation U on k qubits can be given

as a circuit of CNOT and single qubit gates.
I This implementation requires O(4k ) gates.

Thus, CNOT and single-qubit gates are universal.

They form the quantum analogue of {AND,NOT}.



QUCO — Lecture 4

The QM gate toolbox

Universal QM gate sets

An example: simulating the Toffoli gate

|a〉 • |a〉
|b〉 • |b〉

|c〉 �������� |(a ∧ b)⊕ c〉

|a〉 • • • |a〉
|b〉 • �������� • �������� |b〉

|c〉 H R2 R†
2 R2 H |(a ∧ b)⊕ c〉
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Universal QM gate sets

Checking on basis states:

Qubit |a〉 Qubit |b〉 Action on |c〉

|0〉 |0〉 H2 = I

|0〉 |1〉 H2 = I

|1〉 |0〉 HR2R†
2H = H2 = I

|1〉 |1〉 HR2R2H = HZH = X
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Universal QM gate sets

Finally, we simulate
Controlled-Rk gates.

It suffices to simulate controlled Rk−1 gates
— we do this using Rk and CX .

The simulation:
|a〉 • • Rk

|b〉 Rk
�������� R†

k
��������

is equivalent to

|a〉 • |a〉

|b〉 Rk−1 |b〉
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Universal QM gate sets

Checking the simulation

Let us write Rk =

(
1 0
0 eiθ

)
.

I When |a〉 = |0〉, we get:

|0〉|b〉 7→ Rk (|0〉)R†
kRk (|b〉) = |0〉|b〉

I When |a〉 = |1〉,

|1〉|b〉 7→ eiθ|1〉XR†
kXRk (|b〉)
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Universal QM gate sets

Simplifying the answer

We now need to simplify eiθ|1〉XR†
kXRk (|b〉)

In matrix form, eiθXR†
kXRk =

eiθ
(

0 1
1 0

)(
1 0
0 e−iθ

)(
0 1
1 0

)(
1 0
0 eiθ

)

= eiθ
(

0 e−iθ

1 0

)(
0 eiθ

1 0

)

= eiθ
(

e−iθ 0
0 eiθ

)
=

(
1 0
0 e2iθ

)
= R2

k ≡ Rk−1
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Actually using QM gates

Games we can play with qubits

Lloyd’s gambling game

1. Alice prepares a coin in a
certain state, and gives it to
Bob.

2. Privately,
Bob chooses whether or not to
flip the coin, and gives it back.

3. Without looking, Alice may do
what she likes to the coin.

4. Alice calls ‘Heads’ or ‘Tails’

Classically
Alice wins half the time.

Quantum-mechanically
Alice always wins.
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Actually using QM gates

Games we can play with qubits

Describing the game

Setting up the game:

Conventions
I We identify {|heads〉, |tails〉} with {|0〉, |1〉}.
I We ignore normalisation ...

Alice prepares the coin in state |heads〉+ |tails〉.

Assuming Bob flips the coin:





Flip(|heads〉) = |tails〉

Flip(|tails〉) = |heads〉
.
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Actually using QM gates

Games we can play with qubits

How does Alice always win ?

Bob’s flip has absolutely no effect:

Flip(|heads〉+ |tails〉) = |heads〉+ |tails〉

Alice then performs a Hadamard operation |0〉+ |1〉 7→ |0〉.

|heads〉+ |tails〉 7→ |heads〉

Alice correctly calls ‘heads’ every time.

Important: Do not gamble with Alice!
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Quantum Computation

Lecture 5

Sam Braunstein
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Universal QM gates

The Pauli group

The Pauli gates

Recall the 1-qubit operations from the teleportation experiment:

I =
(

1 0
0 1

)
X =

(
0 1
1 0

)

Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

These matrices

1. Form a group.
2. Satisfy X 2 = Y 2 = Z 2 = 1
3. Satisfy Y = iXZ
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Universal QM gates

The Pauli group

Matrix exponentiation

Recall the power series for matrix exponentiation:

eM = I + M +
M2

2!
+

M3

3!
+

M4

4!
+ . . .

A special case
When M2 = I, and x is a real number,

eixM = cos(x)I + i . sin(x)M

Proof: Recall the power series expansions for cos and sin.
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The Pauli group

The rotation gates

These are exponentials of Pauli matrices:

Rx(θ) = e− iθ
2 X , Ry (θ) = e− iθ

2 Y , Rz(θ) = e− iθ
2 Z

Using the special case formula:

I Rx(θ) = cos
(
θ
2

)
I − i . sin

(
θ
2

)
X

I Ry (θ) = cos
(
θ
2

)
I − i . sin

(
θ
2

)
Y

I Rz(θ) = cos
(
θ
2

)
I − i . sin

(
θ
2

)
Z
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The Pauli group

Matrices for the rotation operators:

Explicitly, these have simple matrix formulæ:

I Rx(θ) =




cos θ
2 −i . sin θ

2

−i . sin θ
2 cos θ

2




I Ry (θ) =




cos θ
2 − sin θ

2

sin θ
2 cos θ

2




I Rz(θ) =




e−i θ2 0

0 ei θ2



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Universality for 1-qubit gates

Universal 1-qubit operations

These operators can be used to give all 1-qubit operations.

Theorem:
For every single-qubit unitary U,

U = eiαRz(β)Ry (γ)Rz(δ)

where α, β, γ, δ are real numbers.

Every possible one-qubit gate can be
produced from this smaller set.
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Universal QM gates

Universality for 1-qubit gates

A simple consequence:

Any one-qubit gate can be written as

U = eiαAXBXC

where A,B,C are unitaries satisfying ABC = I.

How to do this ?
Take

I A = RZ (β)RY
(γ

2

)

I B = RY
(
−γ

2

)
RZ

(
− (δ+β)

2

)

I C = RZ

(
(δ−β)

2

)
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Universal QM gates

Universality for 1-qubit gates

The proof ...

First prove that ABC = I

ABC = e−iβ Z
2 e−iγ Y

4 eiγ Y
4 ei(δ+β) Z

4 e−i(δ−β) Z
4

ABC = e−iβ Z
2 ei(δ+β) Z

4 e−i(δ−β) Z
4

ABC = ei(−β
2 + δ

4+
β
4 −

δ
4+

β
4 )Z

ABC = e0.Z = I
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Universality for 1-qubit gates

The proof continues...

Simple Pauli group identities:

I XZX = −Z

I XYX = X (iXZ )X = iX (XZX ) = −Y

Therefore, XBX = RY
(γ

2

)
RZ

(
δ+β

2

)
, and so

AXBXC = RZ (β)RY

(γ
2

)
RY

(γ
2

)
RZ

(
δ − β

2

)

= RZ (β)RY (γ)RZ (δ)

This gives (up to a phase factor), an arbitrary unitary.

RZ

(
δ − β

2

)+
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Universal QM gates

Creating controlled gates

What use is this ?

• • Φ(α)

C �������� B �������� A

Φ(α) =

(
1 0
0 eiα

)

I When first qubit is |0〉,
ABC = I is applied to the second qubit.

I When the first qubit is |1〉,
eiαAXBXC = U is applied to the second qubit.

This circuit implements the controlled-U gate, CU.
•

U
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Universal QM gates

Creating controlled gates

The controlled-controlled U gate

A special case ...
Assume U = V 2, for some unitary V .

Question: Is this really a special case?

The C2U gate
•
•

U

Decomposing the C2U gate
• • •

• �������� • ��������
V V † V

Exercise: Prove that these two circuits are equivalent
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Universal QM gates

Creating controlled gates

Building CkU gates

We build CkU gates using Toffoli gates and ancillary qubits.

Example – this circuit:

• •
• •

• •
• •

U

|0〉 �������� • • �������� |0〉
|0〉 �������� • • �������� |0〉
|0〉 �������� • �������� |0〉

simulates C4U
•
•
•
•
U
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Universal QM gates

Creating controlled gates

Simulating CkU gates, cont.

Some features:
I The ancillary workspace is ‘cleaned up’.

I The simulation takes O(k) gates.

I This can be done without an ancilla
but this takes O(k2) gates.
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How to construct arbitrary states

Preparing arbitrary states
From a fixed input, say |000〉, how can we prepare
an arbitrary three-qubit state

∑

a,b,c∈{0,1}
αabc |abc〉 =

7∑

j=0

αj |j〉?

We will consider all ‘branches’,

|000〉 , |001〉 , . . . , |110〉 , |111〉

For each branch we separately:

1. Assign an amplitude,
2. Assign a phase.
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How to construct arbitrary states

Setting amplitude & phase

To assign amplitudes

Recall the amplitude rotation gate
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

drawn as θ

We will use controlled amplitude rotations:

Two different control conventions!

Control on |0〉
��������
U

Apply U to the 2nd qubit
when the 1st qubit is |0〉.

Control on |1〉
•
U

Apply U to the 2nd qubit
when the 1st qubit is |1〉.
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How to construct arbitrary states

Setting amplitude & phase

Assigning amplitudes (cont.)

The one-qubit case

We use a single amplitude rotation:

|0〉 θ1 cos(θ1) |0〉+ sin(θ1) |1〉

From the identity

cos2(θ1) + sin2(θ1) = 1

We have assigned arbitrary amplitudes to |0〉 and |1〉.
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How to construct arbitrary states

Setting amplitude & phase

The two-qubit case:

The intention is:

When measuring the first qubit only:

I On observing |0〉,
the remaining state is cos(θ2) |0〉+ sin(θ2) |1〉.

I On observing |1〉,
the remaining state is cos(θ3) |0〉+ sin(θ3) |1〉.

This is done using controlled amplitude rotations.
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How to construct arbitrary states

Setting amplitude & phase

A circuit for the 2-qubit case:

|0〉 θ1 �������� •

|0〉 θ2 θ3

This acts as:

|00〉 −→ cos(θ1) |00〉+ sin(θ1) |10〉 −→

cos(θ1) cos(θ2) |00〉
+ cos(θ1) sin(θ2) |01〉

+ sin(θ1) |10〉
7→

cos(θ1) cos(θ2) |00〉
+ cos(θ1) sin(θ2) |01〉
+ sin(θ1) cos(θ3) |10〉
+ sin(θ1) sin(θ3) |11〉
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How to construct arbitrary states

Setting amplitude & phase

The three qubit case:

We use the following circuit:

|0〉 θ1 �������� • �������� �������� • •

|0〉 θ2 θ3 �������� • �������� •

|0〉 θ4 θ5 θ6 θ7

This allows us to set the amplitude of every branch.
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How to construct arbitrary states

Setting amplitude & phase

The overall action is

|000〉 −→ (cos(θ1) |0〉+ sin(θ1) |1〉) |00〉

cos(θ1) |0〉 (cos(θ2) |0〉+ sin(θ2) |1〉) |0〉
−→ +

sin(θ1) |1〉 (cos(θ3) |0〉+ sin(θ3) |1〉) |0〉

−→ . . .

We now need to set the phases!
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How to construct arbitrary states

Setting amplitude & phase

Arranging phase rotations
To rotate phases, we need a diagonal matrix:

For a 2-qubit state:
We rotate the phase of |j〉 by eiγj using:

PhaseRotator =




eiγ0 0 0 0
0 eiγ1 0 0
0 0 eiγ2 0
0 0 0 eiγ3




This can be simplified. Define

Γ0 =

(
eiγ0 0
0 eiγ1

)
and Γ1 =

(
eiγ2 0
0 eiγ3

)
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How to construct arbitrary states

Setting amplitude & phase

Arranging phase rotations (cont.)

Using Γ0 =

(
eiγ0 0
0 eiγ1

)
and Γ1 =

(
eiγ2 0
0 eiγ3

)
,

we implement phase rotations by:
�������� •

Γ0 Γ1

This gives the matrix




eiγ0 0 0 0
0 eiγ1 0 0
0 0 eiγ2 0
0 0 0 eiγ3



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How to construct arbitrary states

Setting amplitude & phase

The 3-qubit case

We wish to rotate the phase of

{|000〉 , |001〉 , |010〉 , . . . , |111〉}

by the factor
{eiγ0 ,eiγ1 ,eiγ2 , . . . ,eiγ7}

We define single-qubit operations Γk =

(
eiγ2k 0

0 eiγ2k+1

)

where k = 0,1,2,3
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Setting amplitude & phase

A circuit for the 3-qubit case

Using

Γk =

(
eiγ2k 0

0 eiγ2k+1

)
�������� �������� • •
�������� • �������� •

Γ0 Γ1 Γ2 Γ3

I C2Γ0 sets phases for |000〉 , |001〉
I C2Γ1 sets phases for |010〉 , |011〉
I C2Γ2 sets phases for |100〉 , |101〉
I C2Γ3 sets phases for |110〉 , |111〉
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How to construct arbitrary states

Setting amplitude & phase

The 3-qubit case, in matrix form:
The circuit:

�������� �������� • •
�������� • �������� •

Γ0 Γ1 Γ2 Γ3

In matrix form:



eiγ0 0 0 0 0 0 0 0
0 eiγ1 0 0 0 0 0 0
0 0 eiγ2 0 0 0 0 0
0 0 0 eiγ3 0 0 0 0
0 0 0 0 eiγ4 0 0 0
0 0 0 0 0 eiγ5 0 0
0 0 0 0 0 0 eiγ6 0
0 0 0 0 0 0 0 eiγ7



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How to construct arbitrary states

Setting amplitude & phase

A couple of Exercises!

For arbitrary n-qubit states:

I (Straightforward !)
Give a general procedure for setting phases.

I (more involved !!)
Give a general procedure for setting amplitudes.
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Query algorithms

Black Boxes & Oracles

What is a Query Algorithm?

Query algorithms

I Input: a ‘black box’, or ‘oracle’ that computes some
function

x f f (x)
I Output: Some information about f

Example:
Given f (x) = c0 + c1x + c2x2 + . . .+ cnxn, find {c0, . . . , cn}.

The goal is to minimise the number of calls to the black box.
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Query algorithms

Deutsch’s algorithm

Deutsch’s problem
Let f be a single-bit function: f : {0,1} → {0,1}.

Four possible functions:

x f1(x) f2(x) f3(x) f4(x)

0 0 1 0 1

1 0 1 1 0

Constant functions
f (x) is the same,
regardless of x .

Balanced functions
The number of 0s is
the same as the
number of 1s.

Goal: find out whether f (0) = f (1) (i.e. find f (0)⊕ f (1)).

Classically, this takes two queries of the black box.
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Deutsch’s algorithm

Classical solutions

First make a reversible version of f :
a f a

b �������� f (a)⊕ b

Use this to compute f (0)⊕ f (1)

0 f X f 1

0 �������� �������� f (0)⊕ f (1)

This solution takes 2 queries.
Question — can we do any better using irreversible gates?
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Deutsch’s algorithm

A quantum-mechanical solution

A quantum algorithm gives a provably faster solution:

A QM algorithm for Deutsch’s problem

|0〉 H
2

f H
3 *-+,Meas.

|1〉 H
1 ��������

This requires only 1 query.

Note: H is the Hadamard gate — 1 2 3 are simply labels.
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Deutsch’s algorithm

How does this work ?

|0〉 H
2

f H
3 *-+,Meas.

|1〉 H
1 ��������

The first two Hadamard gates

|0〉 H
2 1√

2
(|0〉+ |1〉)

|1〉 H
1 1√

2
(|0〉 − |1〉)

I 2H will allow evaluation at f (0) and f (1) simultaneously.
I 1H forms a superposition of the second (target) qubit ...
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Deutsch’s algorithm

Assume first qubit is |0〉

When f flips its input ...

|0〉 f |0〉
1√
2
(|0〉 − |1〉) �������� −1√

2
(|0〉 − |1〉)

Overall state is

−1√
2
|0〉(|0〉 − |1〉)

When f does not flip its input ...

|0〉 f |0〉
1√
2
(|0〉 − |1〉) �������� 1√

2
(|0〉 − |1〉)

Overall state is

1√
2
|0〉(|0〉 − |1〉)

In either case, the final state is (−1)f (0)|0〉(|0〉 − |1〉)
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Deutsch’s algorithm

Now assume first qubit is |1〉
When f flips its input ...

We are left with −1√
2
|1〉(|0〉 − |1〉).

When f does not flip its input ...

We are left with 1√
2
|1〉(|0〉 − |1〉).

Combining the two cases

When the first qubit is |x〉, for x = 0,1, the final state is

(−1)f (x)
√

2
|x〉(|0〉 − |1〉)



QUCO — Lecture 6

Query algorithms

Deutsch’s algorithm

The key to this algorithm:

Recall the ‘quantum coin-tossing game’!
The first qubit is placed into a superposition:

|0〉 H 1√
2
(|0〉+ |1〉)

What happens to this state, when we flip it?

Applying linearity to the result from the last slide:
(and ignoring normalisation!)

|0〉+ |1〉 f (−1)f (0)|0〉+ (−1)f (1)|1〉

|0〉 − |1〉 �������� |0〉 − |1〉
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Deutsch’s algorithm

Almost there ...
Ignoring a common 1√

2
factor .. The first qubit is now in state

(−1)f (0)|0〉+ (−1)f (1)|1〉

f is constant or balanced

x f1(x) f2(x) f3(x) f4(x)

0 0 1 0 1

1 0 1 1 0

When f is constant
This state is
±(|0〉+ |1〉)

When f is balanced
This state is
±(|0〉 − |1〉)

These states are (of course) orthogonal!
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Query algorithms

Deutsch’s algorithm

One final Hadamard

Recall the H gate on the computational basis:

± |0〉 oo H // ±1√
2
(|0〉+ |1〉)

± |1〉 oo H // ±1√
2
(|0〉 − |1〉)

The final Hadamard on the first qubit

|0〉 H f H *-+,Meas.

|1〉 H ��������
We will observe |0〉 or |1〉 at
the detector.
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Query algorithms

One-out-of-four search

Another Quantum Algorithm

One-out-of-four search

We are given a function:

f : {0,1}2 → {0,1}

This takes a pair of bits to a single bit.

It has the additional property (promise) that:

there is exactly one input x such that f (x) = 1.

Remember – x is a pair of bits, so x ∈ {00,01,10,11}.
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Query algorithms

One-out-of-four search

A function with a promise
There is exactly one input x such that f (x) = 1.

This gives 4 possibilities for f . Call these {f00, f01, f10, f11}.

x f00(x) f01(x) f10(x) f11(x)

00 1 0 0 0

01 0 1 0 0

10 0 0 1 0

11 0 0 0 1
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Query algorithms

One-out-of-four search

The query problem

Given f , we wish to:

Find the unique input for which f (x) = 1.

The classical solution

In the worst case, we need 3 queries.

The quantum solution

One query to the black box is enough!
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One-out-of-four search

The first step

We need a unitary oracle Uf that implements f :

A circuit for Uf

|x1〉
f

|x1〉

|x2〉 |x2〉

|y〉 �������� |y ⊕ f (x1, x2)〉

The action of Uf

On the computational basis:

Uf |x1, x2, y〉 7→ |x1, x2, y ⊕ f (x1, x2)〉
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One-out-of-four search

How to use this oracle
As in the previous lecture:

The ‘control’ qubits are first placed in an equal superposition

1
2
(|00〉+ |01〉+ |10〉+ |11〉)

The ’target’ qubits are first placed in the state 1√
2
(|0〉 − |1〉)

How to create these inputs?

Check: Using Hadamards:

I (H ⊗ H) |00〉 = 1
2(|00〉+ |01〉+ |10〉+ |11〉)

I H |1〉 = 1√
2
(|0〉 − |1〉)
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Query algorithms

One-out-of-four search

Bringing these together:

We have the following circuit:

|0〉 H
f

|0〉 H

|1〉 H ��������
|001〉 7→ (|00〉+ |01〉+ |10〉+ |11〉)(|0〉 − |1〉)

7→
(
(−1)f (00) |00〉+ (−1)f (01) |01〉 +(−1)f (10) |10〉+ (−1)f (11) |11〉

)
(|0〉 − |1〉)
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One-out-of-four search

How to get an output

The output of the previous circuit is
(
(−1)f (00) |00〉+ (−1)f (01) |01〉 +(−1)f (10) |10〉+ (−1)f (11) |11〉

)
(|0〉 − |1〉)

This is a product state,
∣∣Ψij
〉
(|0〉 − |1〉), where

|Ψ00〉 = − |00〉+ |01〉+ |10〉+ |11〉
|Ψ01〉 = |00〉− |01〉+ |10〉+ |11〉
|Ψ10〉 = |00〉+ |01〉− |10〉+ |11〉
|Ψ11〉 = |00〉+ |01〉+ |10〉− |11〉

Exercise: These states are all orthogonal!
... and can therefore be distinguished by measurement!
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One-out-of-four search

Distinguishing orthogonal states

The full algorithm is given by:
|0〉 H

f U

*-+,Meas.

|0〉 H *-+,Meas.

|1〉 H ��������
The 2-qubit unitary U converts

|Ψ00〉 = − |00〉+ |01〉+ |10〉+ |11〉
|Ψ01〉 = |00〉− |01〉+ |10〉+ |11〉
|Ψ10〉 = |00〉+ |01〉− |10〉+ |11〉
|Ψ11〉 = |00〉+ |01〉+ |10〉− |11〉





into





|00〉
|01〉
|10〉
|11〉
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One-out-of-four search

How to find this unitary?

We can simply write down U−1

U−1 =
1
2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




And take the conjugate transpose to find U = U−1.

Challenge! Simulate U using H, Toffoli, CNOT , X and Z gates.
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One-out-of-four search

Two qubits and beyond?

Can we generalise this to arbitrary qubits ??

I In larger spaces, this method breaks down.

I The output state vectors are not orthogonal.

We will later see that searching a space of
size N takes O(

√
N) queries.
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Another Query Algorithm

Remember: Query Algorithms

Query algorithms

I Input: a ‘black box’, or ‘oracle’ that computes some
function

x f f (x)

I Output: Some information about f

These often involve a ‘promise’
Examples:

I f (x) = 1, for exactly one input x .
I The function f is either balanced or constant.
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Another Query Algorithm

Constant vs. Balanced functions

Constant and Balanced functions

Consider a function f : {0,1}n → {0,1}.

We are promised that this is either constant or balanced.

Constant functions

f is constant when f (x) is
the same – i.e.

f (x) = 0 or f (x) = 1

for all values of x .

Balanced functions

f is balanced when
∑

x

f (x) = 2n−1

i.e. f (x) = 1 for exactly half the
inputs.
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Another Query Algorithm

Constant vs. Balanced functions

Discriminating constant and balanced functions

We have a function f : {0,1}n → {0,1}.

We are promised that this is either :
1. Constant.
2. Balanced.

We wish to know which one of these is correct.

Classically, we require 2n−1 + 1 queries to be sure.

Quantum-mechanically we need one query.
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The Deutsch-Jozsa algorithm

Let’s start with the circuit

|0〉 H

f

H "%#$meas.

|0〉 H H "%#$meas.

...
...

|0〉 H H "%#$meas.

|1〉 H ��������

This is the full circuit for the Deutsch-Jozsa algorithm.
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The Deutsch-Jozsa algorithm

Reminder

We have made an oracle Uf from the classical function
f : {0,1}n → {0,1}

|x1〉

f

|x1〉

|x2〉 |x2〉
...

...

|xn〉 |xn〉

|y〉 �������� |f (x1, . . . , xn)⊕ y〉

We will – of course – query this in a suitable superposition.
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The Deutsch-Jozsa algorithm

The first n qubits ...

Creating equal superpositions
Hadamard gates are applied to the first n qubits:

|0〉 |0〉 . . . |0〉 7→ (|0〉+ |1〉)(|0〉+ |1〉) . . . (|0〉+ |1〉)

Expanding this out, we get all possible bitstrings

|0..000〉+ |0..001〉+ |0..010〉+ |0..011〉+ |0..100〉+ . . .

Translating from binary

|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ . . .+
∣∣2n − 1

〉
=

2n−1∑

x=0

|x〉
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The Deutsch-Jozsa algorithm

The first n + 1 Hadamards ...

For the final qubit: H(|1〉) = (|0〉 − |1〉)

The input to the oracle is therefore

2n−1∑

x=0

|x〉 .(|0〉 − |1〉)

Exercise What is the correct normalisation for this state??
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The Deutsch-Jozsa algorithm

How does the oracle work ?

The oracle

f...
...

��������

The action

Uf |x1, x2, . . . , xn, y〉

= |x1, x2, . . . , xn, f (x1, . . . , xn)⊕ y〉

Assume ...
I The first n qubits are in

the computational basis.
I The last qubit is |0〉 − |1〉.

The effect is:

Uf (|x〉 (|0〉 − |1〉))

= (−1)f (x) |x〉 (|0〉 − |1〉)
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The Deutsch-Jozsa algorithm

By linearity:

In the Deutsch-Jozsa algorithm:
I The input to the oracle is

2n−1∑

x=0

|x〉 (|0〉 − |1〉)

I As the oracle is linear,

Uf

(
2n−1∑

x=0

|x〉 (|0〉 − |1〉)
)

=
2n−1∑

x=0

(−1)f (x) |x〉 .(|0〉 − |1〉)
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The Deutsch-Jozsa algorithm

Comparing balanced and constant functions ...

The final qubit in the circuit is |0〉 − |1〉. This is:
I Not measured.
I Not entangled with the other qubits.

For the first n qubits, the oracle outputs

|Ψ〉 =
2n−1∑

x=0

(−1)f (x) |x〉

We consider two cases:

1. Where f is constant.
2. Where f is balanced.
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The Deutsch-Jozsa algorithm

Oracle outputs – the two cases
When f is constant, |Ψ〉 = ±∑2n−1

x=0 |x〉.

When f is balanced, we simply have

|Ψ〉 =
2n−1∑

x=0

(−1)f (x) |x〉

However, the two cases are orthogonal ...
For a balanced function,

2n−1∑

x=0

(−1)f (x) |x〉 is orthogonal to
2n−1∑

x=0

|x〉
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The Deutsch-Jozsa algorithm

Orthogonality for the constant / balanced outputs
When f is balanced, simple algebra gives:

(
2n−1∑

x=0

〈x |
)(

2n−1∑

x=0

(−1)f (x) |x〉
)

= 0

This comes from:

I a contribution of 2n−1 from the cases where f (x) = 1,

I a contribution of −2n−1 from the cases where f (x) = 0.

Exercise: verify this for the function

f (x) =
{

1 x = 0, ...,3
0 x = 4, ...,7
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The Deutsch-Jozsa algorithm

Distinguishing constant and balanced functions

The story so far:

|0〉 H

f
|0〉 H

...
...

|0〉 H

|1〉 H ��������

On the first n qubits:

The output when f is constant

is orthogonal to

The output when f is balanced.

The two cases are (perfectly) distinguishable.
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The Deutsch-Jozsa algorithm

The rôle of the final Hadamards

Remember the final hadamards on the first n qubits:

|0〉 H

f

H "%#$meas.

|0〉 H H "%#$meas.

...
...

|0〉 H H "%#$meas.

|1〉 H ��������

These allow us to use computational basis measurements.
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The Deutsch-Jozsa algorithm

Mapping oracle outputs to the computational basis

The hadamard is its own inverse, so

H⊗n |00 . . .0〉 =
2n−1∑

x=0

|x〉 ⇔ H⊗n

(
2n−1∑

x=0

|x〉
)

= |00 . . .0〉

I When f is constant,
the result of measurement is |000 . . .0〉.

I When f is balanced,
the result of measurement is orthogonal to |000 . . .0〉.

Remember: unitaries preserve orthogonality!
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The Deutsch-Jozsa algorithm

An operational interpretation
We run the Deutsch-Jozsa circuit, using a black box oracle Uf .

We measure the output in the computational basis.

I When we observe |000 . . .0〉, the function must be
constant.

I When we observe anything else, the function must be
balanced.

We have distinguished between balanced and
constant functions using a single call to the oracle.
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Balanced vs. constant, classically

Certainty is costly!

The question of probabilities

We have a function f{0,1}n → {0,1}.

We are promised that this is either :
1. Constant.
2. Balanced.

Classically, to find out which is the case:

I We require 2n−1 + 1 queries to be certain.

I How about almost certain?
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Balanced vs. constant, classically

Classical probabilistic algorithms

A probabilistic challenge

Let f : {0,1}n → {0,1} be either constant or balanced.

I Randomly pick x1, x2 from {0,1}n.

I if f (x1) = f (x2), output constant.

I If f (x1) 6= f (x2), output balanced.

When f is constant, this ‘algorithm’ is always correct!

When f is balanced, this ‘algorithm’ succeeds with prob. = 1
2 .
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Balanced vs. constant, classically

Classical probabilistic algorithms

Iterating a probabilistic algorithm ...
Each application requires 2 queries of f .

Repeating the algorithm k times ...

I This needs 2k queries.

I And has a one-sided error probability of
(1

2

)k

These are very good odds ...

In the limit (for large n), a constant number of trials
solves the problem to any given probability!
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About  HH ... H = Hn

 
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yxn  



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2
1Theorem: for  x  {0,1}n,

Thus,  Hnx1 ... xn = (y1
(–1)x1y1y1) ... (yn

(–1)xnynyn)
Pf: For all x  {0,1}n,  H x = 0 + (–1) x1 = y (–1)xyy
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2
1HHExample:

where x·y = x1y1  ...  xnyn

= y (–1) x1y1  ...  xnyny1 ... yn █
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Simon’s problem
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Quantum vs. classical separations

black-box problem quantum classical
constant vs. balanced 1 (query) 2 (queries)
1-out-of-4 search 1 3
constant vs. balanced 1 ½ 2n + 1
Simon’s problem

(only for exact)

(probabilistic)
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Simon’s problem
Let f : {0,1}n {0,1}n have the property that there exists
an r  {0,1}n such that f (x) = f (y) iff xy = r or x = y

x f (x)
000
001
010
011
100
101
110
111

011
101
000
010
101
011
010
000

Example:
What is r is this case? ________

Answer: r = 101

In the table x coincides with 
exactly one other value xr
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A classical algorithm for Simon
Search for a collision, an x ≠ y such that  f (x) = f (y) 

A hard case is where r is chosen randomly from {0,1}n– {0n}
and then the “table” for f is filled out randomly subject to the 
structure implied by r

1. Choose x1, x2 ,..., xk  {0,1}n randomly (independently)

2. For all i ≠ j, if f (xi) = f (xj) then output xixj and halt

How big does k have to be for the probability of a collision 
to be a constant, such as ¾?

Answer: O(2n/2),      each (xi , xj) collides with prob. O(2–n)
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Classical lower bound

Theorem: any classical algorithm solving Simon’s problem 
must make  Ω(2n/2) queries

Proof is omitted here—note that the performance analysis 
of the previous algorithm does not imply the theorem

… how can we know that there isn’t a different algorithm
that performs better?
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A quantum algorithm for Simon I

x2
xn

x1
f

y2
yn

y1

x2
xn

x1

y f (x)

Oracle:

Proposed start of quantum 
algorithm: query all values 
of  f in superposition

f
H
H

0

0
0

H0

0
0

What is the output state of 
this circuit?

?
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A quantum algorithm for Simon II
Answer: the output state is

 

 n,x

xfx
10

)(

)()( rxfrxxfx
Tx




Let T  {0,1}n be such that one element from
each matched pair is in T (assume r ≠ 00...0)

x f (x)
000
001
010
011
100
101
110
111

011
101
000
010
101
011
010
000

Example: could take T = {000, 001, 011, 111}

Then the output state can be written as:

 



Tx

xfrxx )(
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A quantum algorithm for Simon III
Measuring the second register yields  x + xr in the first 
register, for a random  x  T

How can we use this to obtain some information about r?

Try applying Hn to the state, yielding:

   
yy

n,yn,y

yrxyx   




1010

)()1()1(

 
y

n,y

yryx 







 

10

)1(1)1(
1/2n–1 if r ·y = 0
0   if r ·y ≠ 0Measuring this state yields  y  with prob.  
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A quantum algorithm for Simon IV
Executing this algorithm  k = O(n) times 
yields random y1, y2 ,..., yk  {0,1}n such
that r ·y1 = r ·y2 = ... = r ·yn = 0

f
H
H

0

0
0

H0

0
0

H
H
H

This is a system of  k linear equations, Y.r = 0:



























































0

0
0

2

1

21

22221

11211











nknkk

n

n

r

r
r

yyy

yyy
yyy

With high probability, there is a unique non-zero solution 
that is  r (which can be efficiently found by linear algebra) 

How does this help?

No need to actually 
measure the target 
qubits. Why?
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Conclusion of  Simon’s algorithm

• Any classical algorithm has to query the black box (2n/2 )
times, even to succeed with probability ¾

• There is a quantum algorithm that queries the black box
only O(n) times, and succeeds with probability ¾

• There is an exact solution: Repeat the algorithm until
dim{yj} = n - 1. Then solve Y.r = 0, to yield a unique r. This
too takes O(n) calls to the oracle.
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Introduction

Shor and Fourier transforms

Shor’s algorithm
These lectures are about

I Shor’s algorithm.

I The Quantum Fourier Transform

Shor’s algorithm is:

I The best-known application of QM computing.

I Very useful in cryptanalysis.

I Not proven to be faster than any classical algorithm.
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Introduction

Introducing the complex plane

Starting to use complex numbers

So far ...

we have not explicitly used complex
numbers in our quantum algorithms.

Shor’s algorithm uses:

1. complex phases,

2. the Fourier transform,

to exploit quantum parallelism
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Introduction

Basic maths revision!

Geometric series & roots of unity
Remember the sum of a Geometric Series:

N−1∑

j=0

z j =
1− zN

1− z
provided z 6= 1

We will apply this to complex roots of 1.

Example: the 8th roots of 1

I ω = e2πi/8

I ω, ω2, ω3. . . . lie on a circle.
I ωk is an 8th root of 1,

for all integers k .
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Introduction

Basic maths revision!

Summing roots of unity
Let ω = e

2πi
N be an N-th root of 1. What is

∑N−1
y=0 ω

xy ?

When x 6= 0

N−1∑

y=0

(ω)xy =
N−1∑

y=0

(ωx)y =
1− (ωx)N

1− ωx = 0

When x = 0

N−1∑

y=0

(ω)xy =
N−1∑

y=0

(
ω0
)
=

N−1∑

y=0

1 = N
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Introduction

Basic maths revision!

Roots of unity & the Kronecker delta
We have proved that:

N−1∑

y=0

(ω)xy = N.δx ,0 where δx0 =

{
1 x = 0
0 x 6= 0

This function δx0 is the Kronecker delta.

Modular arithmetic, and summing roots of unity

When x = 0,±N,±2N,±3N, . . . we get the same result.

The full formula is
N−1∑

y=0

e
2πixy

N = N.δx ,0 (Mod N)
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Introduction

Basic maths revision!

The quantum Fourier transform

For n qubits, the computational basis is

{|0〉, |1〉, . . . , |N − 1〉} where N = 2n

The quantum Fourier transform is defined on the
computational basis by

FN |x〉 =
1√
N

N−1∑

y=0

ωxy |y〉 where ω = e
2πi
N

Exercise: Give the matrix for FN , for 1, 2 and 3 qubits.
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Introduction

Basic maths revision!

The Inverse quantum Fourier transform

The QFT has an inverse:

F−1
N |y〉 =

1√
N

N−1∑

z=0

ω−yz |z〉 where ω = e
2πi
N

Exercises:
1. Give the matrix for F−1

N , for 2 and 3 qubits.
2. Check that these are the Hermitian conjugates (i.e. the

daggers) of the matrices for FN .
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Introduction

Basic maths revision!

Checking F † really is the inverse

Let |x〉 be a computational basis state.

Then F†NFN |x〉 =

F†
(

1√
N

∑N−1
y=0 ω

xy |y〉
)

by def.n of F

= 1√
N

∑N−1
y=0 ω

xyF†|y〉 by linearity

= 1
N
∑N−1

y=0 ω
xy ∑N−1

z=0 ω
−yz |z〉 by def.n of F†

= 1
N
∑N−1

z=0
∑N−1

y=0 ω
y(x−z)|z〉 by basic algebra
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Introduction

Basic maths revision!

Checking F † is the inverse (cont.)
So far,

F†NFN |x〉 =
1
N

N−1∑

z=0

N−1∑

y=0

ωy(x−z)|z〉

Now remember that

N−1∑

y=0

ωy(x−z) = N.δx ,z (mod N) =

{
N x = z (mod N)
0 x 6= z (mod N)

This sum is zero, except for the case where x = z.

Therefore,
F†NFN |x〉 = |x〉
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Introduction

Basic maths revision!

F † is inverse to F

I For computational basis states, F†F|x〉 = |x〉.

I By linearity, F†F|ψ〉 = |ψ〉, for all states.

Exercises:
Using the matrices for the 2 and 3 qubit cases, check that

F†F = I

i.e. check that F is unitary.
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Shor’s algorithm

An overview

Shor’s algorithm – a broad picture

Shor’s algorithm has 2 parts:

1. A quantum part that finds the period of a function.

2. A classical part that uses this to find factors of an integer.

Important
I The (quantum) period-finding routine is very general

— it is not restricted to factorising.
I The (classical) post-processing is simple number theory

— and easy to compute.
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Shor’s algorithm

An overview

Periodic functions
A periodic function is one that repeats itself after a certain
time.

!

"#!$

!

"#!$

!%& !%'&

!"#$%&'!

!"#$%&'!

!"#$%&'!

f (x) = f (x + r) = f (x + 2r) = f (x + 3r) + . . .

When the function is “wrapped round” after any
multiple of the period, it repeats itself.
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Shor’s algorithm

quantum period-finding

A quantum algorithm for periodic functions

We have a function f (x)

We are promised that this is periodic.

Finding the period
This means that

f (x) = f (x + r) = f (x + 2r) = . . . for all x

The goal is to find the period r .

We will settle for finding some multiple of r .
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Shor’s algorithm

quantum period-finding

A circuit for period-finding

|0〉

F†M f FM

meas.

|0〉 meas.

...
...

|0〉 meas.

|0〉

+...
...

|0〉
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Shor’s algorithm

quantum period-finding

About that oracle ...

The diagram

f...
...

+...
...

The action

On the computational basis:

Uf |x〉|y〉 = |x〉|y + f (x)〉

Exercise:
Using Mod 2 arithmetic, give

1. Controlled-Not (i.e. CX gate)
2. Controlled-Controlled-Not (i.e.

Toffoli gate)

in this form
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Shor’s algorithm

quantum period-finding

The action of the quantum circuit

We start off with |0〉|0〉.

Reminder: These are multi-qubit states.

We apply the inverse QFT to the first register:

|0〉|0〉 7→ 1√
M

M−1∑

x=0

e
−2πix.0

M |x〉|0〉 = 1√
M

M−1∑

x=0

|x〉|0〉

This gives an equal superposition in the first register ...

We might as well have used Hadamards!
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Shor’s algorithm

quantum period-finding

The action of the quantum circuit (cont.)

We now have
1√
M

M−1∑

x=0

|x〉|0〉

We apply the oracle Uf :

1√
M

M−1∑

x=0

|x〉|0〉 7→ 1√
M

M−1∑

x=0

|x〉|f (x)〉

So far, there are still no complex phases!
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Shor’s algorithm

quantum period-finding

The final step of the quantum circuit

To the (first register of)

1√
M

M−1∑

x=0

|x〉|f (x)〉

we apply the QFT:

1√
M

M−1∑

x=0

|x〉|f (x)〉 7→ 1
M

M−1∑

y=0

M−1∑

x=0

e
2πixy

M |y〉|f (x)〉

This is the final result!!
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Shor’s algorithm

quantum period-finding

Why should be get excited over this state ??

Let’s look at a particular branch:
Recall that f (x) = f (x + r) = f (x + 2r) = . . .

The amplitude for |y〉|f (x)〉 is therefore

1
M

M
r −1∑

m=0

e
2πi(x0+mr)y

M |y〉|f (x0)〉

where
x = x0 + mr for m = 0,1, . . . ,

M
r
− 1
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Shor’s algorithm

quantum period-finding

The amplitude of |y〉|f (x)〉
The amplitude for |y〉|f (x)〉 is

1
M

M
r −1∑

m=0

e
2πi(x0+mr)y

M |y〉|f (x0)〉 =
1
M

M
r −1∑

m=0

e
2πix0y

M e
2πimry

M |y〉|f (x0)〉

Simple re-arranging gives

1
M

e
2πix0y

M




M
r −1∑

m=0

e
2πimy
M/r


 |y〉|f (x0)〉

Now recall summing roots of unity ...
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Shor’s algorithm

quantum period-finding

The amplitude of |y〉|f (x)〉

The amplitude for |y〉|f (x)〉 is

1
M

e
2πix0y

M




M
r −1∑

m=0

e
2πimy
M/r


 |y〉|f (x0)〉

We have seen that

M
r −1∑

m=0

e
2πimy
M/r =

M
r
δy ,0 (mod M

r )
=

M
r





1 y = 0
(

mod M
r

)

0 otherwise
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Shor’s algorithm

quantum period-finding

The interpretation ...

The amplitude of |y〉|f (x)〉 is essentially zero, unless

y = 0 ,
M
r
,

2M
r

,
3M
r

, . . .

On measurement, we see |y〉 =
∣∣∣ kM

r

〉
.

Repeating the experiment
After several trials, we have with very high probability,
enough information to find r .

(e.g. observing finding a co-prime pair y , y ′ will do).
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Shor’s algorithm

Factoring large integers

Shor’s algorithm – factoring integers
We wish to factor the integer N.

Let us randomly pick some integer a.

sensible choices ...
I a ≤

√
N.

I a is relatively prime to N
I This is easy to check.

I If it is not true, we already have a factor
... no QM computer needed!

We study the function

f (x) = ax (mod N)
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Shor’s algorithm

Factoring large integers

Period-finding with modular exponentials

The function f (x) = ax (mod N) is periodic.

Suppose the period is r . That is, ar ≡ 1 (mod N).

Two possibilities:

1. The period r is odd.

This is useless. We start again with another value for a.

2. The period r is even.

This will let us factorize N.



QUCO — Lecture 10

Shor’s algorithm

Factoring large integers

From period-finding to factoring

We have:
I ar − 1 ≡ 0 (mod N)

I r is an even number: r = 2p.
Simple algebra gives

ar − 1 (mod N) ≡ (a
r
2 − 1)(a

r
2 + 1) (mod N)

Therefore (ap − 1) (ap + 1) ≡ 0 (mod N)

So ap − 1 or ap + 1 has a common factor with N.

The final step: Calculate the greatest common divisor, using
the “chinese remainder theorem”.
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Shor’s algorithm

Factoring large integers

Shor’s algorithm — a worked example

We wish to factor N = 91.

We try a = 3, and hence the function f (x) = 3x (mod 91).

x 3x 3x mod 91
0 1 1
1 3 3
2 9 9
3 27 27
4 81 81
5 243 61
6 729 1
7 2187 3

The period is r = 6

I 36 − 1 ≡ 0 (mod 91)

I (33 − 1)(33 + 1) ≡ 0 (mod 91)

I 26× 28 ≡ 0 (mod 91)
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Shor’s algorithm

Factoring large integers

Factoring 91, using Shor’s algorithm

By finding the period of f (x) = 3x (mod 91),
we have discovered that 26× 28 ≡ 0 (mod 91).

Therefore, either 26 or 28 (or both) share a factor with 91.

Taking common divisors:

gcd(26,91) = 13 , gcd(28,91) = 7

Either 13 or 7 divides 91.

In fact, they both do: 91 = 13× 7
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Shor’s algorithm

Factoring large integers
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Filling in the gaps

HOW2QFT?

Some missing details ...

An important question:

How do we implement the QFT?

i.e. using the basic toolkit of QM gates?
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Filling in the gaps

HOW2QFT?

The Quantum Fourier Transform (QFT)

Remember:

FN |x〉 =
1√
N

N−1∑

y=0

e
2πixy

N |y〉

As we are working with qubits, we take N = 2n.

Let us write x in binary as

x = xnxn−1xn−2xn−3 . . . x1 where xk = 0 or 1

This gives
x = 2n−1xn + 2n−2xn−1 + . . .+ x1
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Filling in the gaps

HOW2QFT?

Implementing the QFT
Similarly (but in the opposite order!) we write

y = y1y2 . . . yn where yk = 0 or 1

this gives
y = 2n−1y1 + 2n−2y2 + . . .+ yn

Using this notation, we may easily calculate xy (mod 2n) =

x .2n−1y1 + x .2n−2y2 + . . .+ x .yn (mod 2n)

= 2n−1x1y1+2n−2(2x2+x1)y2+. . .+(2n−1xn+2n−2xn−1+. . .+x1)yn
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Filling in the gaps

HOW2QFT?

Jumping over to qubits:
We now write

I |x〉 = |xnxn−1 . . . x1〉
I |y〉 = |y1y2 . . . yn〉 = |y1〉 ⊗ |y2〉 ⊗ . . .⊗ |yn〉

How does this help ?

In the QFT:
I The overall normalization is 1√

2n = 1√
2
× 1√

2
× . . .× 1√

2
.

I The summation may be written as

2n−1∑

y=0

(. . .) =
1∑

y1=0

1∑

y2=0

. . .
1∑

yn=0

(. . .)
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Filling in the gaps

HOW2QFT?

Splitting up the QFT

Using these tricks, we may give F2n on the individual qubits:

F2n |xn . . . x1〉 =


 1√

2

1∑

y1=0

e2πi x1y1
2 |y1〉


⊗


 1√

2

1∑

y2=0

e2πi (2x2+x1)y2
22 |y2〉




⊗ . . .⊗


 1√

2

1∑

yn=0

e2πi
(2n−1xn+2n−2xn−1+...+x1)yn

2n |yn〉



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Filling in the gaps

HOW2QFT?

The QFT and QM gates

Recall the Hadamard: |a〉 H 1√
2

∑1
b=0 (−1)ab|b〉

This gives

H|a〉 = 1√
2

1∑

b=0

e2πi ab
2 |b〉

We also need the Controlled-Rk gate:

|a〉 • |a〉

|b〉 Rk e2πi ab
2k |b〉
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Filling in the gaps

HOW2QFT?

Building Quantum Fourier Transforms

For a single qubit:
The QFT is given by

|x1〉 H 1√
2

∑1
y1=0 e2πi x1y1

2 |y1〉

For 2 qubits:
The QFT is given by

|x1〉 • H 1√
2

∑1
y1=0 e2πi x1y1

2 |y1〉

|x2〉 H R2
1√
2

∑1
y2=0 e2πi x2y2

2 e2πi x1y2
22 |y2〉
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Filling in the gaps

HOW2QFT?

Building the QFT - the 3-qubit case

For 3 qubits

The pattern continues ... the QFT is given by:

|x1〉 • • H

|x2〉 • H R2

|x3〉 H R2 R3
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Filling in the gaps

HOW2QFT?

Building the QFT - the general case

By either
1. Guessing the pattern:
2. Explicit calculation:

... the QFT is given by:

|x1〉 • • • H

|x2〉 • • H R2

|x3〉 • H R2 R3
...

...
|xn〉 H R2 · · · Rn−2 Rn−1 Rn
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Filling in the gaps

HOW2QFT?

Important points:

Various features of this decomposition:

I For any computational basis state |x〉,
its Quantum Fourier Transform, F|x〉, can be factorised.

I The individual qubits remain disentangled.

I This makes it easy to simulate classically.

The same is not true for arbitrary states.
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Grover’s algorithm

Another query / promise algorithm

Grover’s algorithm

These lectures are about Grover’s algorithm.

... also known as virtual database-searching.

Grover’s algorithm is:

I Another query / promise algorithm.

I Useful in a wide range of settings.

I Provably faster than any classical algorithm.
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Grover’s algorithm

Another query / promise algorithm

The problem ...

We have a function f : {0, . . . ,N − 1} → {0,1}.

The promise ...
There is some unique x = x0 such that f (x) = 1.

We wish to find this unique x0

Classically: This takes O(N) queries.

Quantum-mechanically: This needs O
(√

N
)

queries.
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Grover’s algorithm

Another query / promise algorithm

Grover’s algorithm ... an outline

The algorithm is as follows:

1. For N = 2n, we prepare a standard state of n + 1 qubits .

2. The “Grover operator” (a QM circuit) is applied.

I This step is repeated a fixed number of times.

3. The first n qubits are measured.
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Grover’s algorithm

The naming of the parts

The initial state preparation

The circuit
|0〉 H

...
...

|0〉 H

|1〉 H

The action

|0〉⊗n|1〉 7→
(

1√
N

N−1∑

x=0

|x〉
)
.

1√
2

(|0〉−|1〉)

We will write the equal superposition as

|Ψ0〉 =
1√
N

N−1∑

x=0

|x〉

so the initial state is |Ψ0〉. 1√
2

(|0〉 − |1〉).
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Grover’s algorithm

The naming of the parts

The Grover operator

f

H

f0

H

H H

...
...

...
...

H H

X
This features:

I Several Hadamards ...
I A single NOT gate ...
I Two distinct oracles, Uf and Uf0 .
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Grover’s algorithm

The naming of the parts

The first oracle, Uf

The first oracle

f...
...

On the computational basis

Uf (|x〉|y〉) = |x〉|f (x)⊕ y〉

Remember
There exists some unique

x0 ∈ {0 , 1 , 2 , 3 , . . .}

such that f (x0) = 1.

The final qubit is flipped exactly when the first n qubits give |x0〉.
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Grover’s algorithm

The naming of the parts

The first oracle gives sign flips

Remember: the final qubit is in state 1√
2

(|0〉 − |1〉).

X (|0〉 − |1〉) = (−1).(|0〉 − |1〉)

This introduces a sign flip into the branch containing |x0〉.

(α0|0〉+ α1|1〉+ . . .+ β|x0〉+ . . .+ αN |N − 1〉)(|0〉 − |1〉)
Uf
��

(α0|0〉+ α1|1〉+ . . .−β|x0〉+ . . .+ αN |N − 1〉)(|0〉 − |1〉)
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Grover’s algorithm

The naming of the parts

The second oracle, Uf0

f0 : {0,1}n → {0,1} is defined by f0(x) =

{
1 x = 0
0 otherwise.

The second oracle

f0...
...

|0〉 − |1〉 |0〉 − |1〉

Using identical reasoning:

(α0|0〉+ α1|1〉+ α2|2〉+ . . .)(|0〉 − |1〉)
Uf0

��
(−α0|0〉+ α1|1〉+ α2|2〉+ . . .)(|0〉 − |1〉)

This seems uninteresting ... but don’t forget the Hadamards!



QUCO — Lecture 11

Grover’s algorithm

Phases change, but the state remains the same

A convention ...
Important: the final qubit is in state (|0〉 − |1〉).

I This provides relative phase changes between branches.

I However (despite being the target), does not change!

Convention: we describe the action on the first n qubits
... without explicitly writing the final (|0〉 − |1〉).

If this is confusing, write (|0〉 − |1〉) after everything in the following slides!
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Grover’s algorithm

Phases change, but the state remains the same

The first oracle, revisited

f...
...

|0〉 − |1〉 |0〉 − |1〉

Conditional phase-flip
This flips the sign of the
branch where f (x) = 1
i.e.

|x〉 7→
{
−|x〉 x = x0
|x〉 x 6= x0

On the first n qubits ...
This gives a unitary operator U = In − 2|x0〉〈x0|

Exercise: Check this (i) is Unitary, and (ii) has the required
action.
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Grover’s algorithm

Phases change, but the state remains the same

The second oracle, with added Hadamards

H

f0

H

...
...

H H

|0〉 − |1〉 |0〉 − |1〉

On the first n qubits ...
This oracle gives the unitary operator In − 2|0〉〈0|

How do the Hadamards change this?
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Grover’s algorithm

Phases change, but the state remains the same

The Hadamards and the oracle

Still looking at the first n qubits ...
The oracle gives the unitary operator In − 2|0〉〈0|

Including Hadamards, the overall action is

V = H⊗n(In − 2|0〉〈0|)H⊗n

Expanding this out, V = H⊗nInH⊗n − 2 (H⊗n|0〉) (H⊗n|0〉)†

= In − 2

(
1√
N

N−1∑

x=0

|x〉
)(

1√
N

N−1∑

x=0

〈x |
)

= In − 2|Ψ0〉〈Ψ0|
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Grover’s algorithm

Phases change, but the state remains the same

The Hadamards and the oracle (cont.)

The second oracle, together with Hadamards, gives

V = In − 2|Ψ0〉〈Ψ0|

Interpretation

I As before, we think of this as a conditional phase-flip.

I However, it is not in the computational basis.

I The ‘component of the state in the direction |Ψ0〉’ is flipped.
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Grover’s algorithm

Phases change, but the state remains the same

That final NOT gate

...

|0〉 − |1〉 X |0〉 − |1〉

Unconditional phase-flip

X (|0〉 − |1〉) = −(|0〉 − |1〉)

This simply adds in an
overall sign change.

Remember - global phases cannot be observed.

This (−1) is simply to tidy up the mathematics!
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Grover’s algorithm

The action starts here!

How does the algorithm work ??

I Our “target state” is |x0〉; let us call this Logical True

|T 〉 = |x0〉

I We define Logical False to be

|F〉 =
1√

N − 1

∑

x 6=x0

|x〉 =
1√

N − 1

∑

f (x)=0

|x〉

(i.e. an even superposition of all non-target
computational basis states)
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Grover’s algorithm

The action starts here!

A remarkable fact:

All the action takes place in the subspace
spanned by |T 〉 and |F〉

For example:

I Our starting state is |Ψ0〉 = 1√
N

∑N−1
x=0 |x〉.

I We may write this as

|Ψ0〉 =

√
N − 1√

N
1√

N − 1

∑

x 6=x0

|x〉+
1√
N
|x0〉

In terms of |T 〉 and |F〉, this is |Ψ0〉 =
√

N−1√
N
|F〉+ 1√

N
|T 〉
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Grover’s algorithm

The action starts here!

The intermediate states in Grover’s algorithm

We have a series of states: |Ψ0〉 7→ |Ψ1〉 7→ |Ψ2〉 7→ . . .

The initial state is |Ψ0〉 =
√

N−1√
N
|F〉+ 1√

N
|T 〉.

I We write this as cos(θ0)|F〉+ sin(θ0)|T 〉,

where

cos(θ0) =

√
N − 1√

N
, sin(θ0) =

1√
N

Claim: We can write the j th state as cos(θj)|F〉+ sin(θj)|T 〉.
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Grover’s algorithm

The action starts here!

By induction ...

1. We know that the starting state |Ψ0〉 is in this form ...

2. Given
|Ψk 〉 = cos(θk )|F〉+ sin(θk )|T 〉

we show that |Ψk+1〉 is also in this form.

This will take a little calculation ...
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Grover’s algorithm

The action starts here!

Some sums!

cos(θk )|F〉+ sin(θk )|T 〉
U
��

cos(θk )|F〉− sin(θk )|T 〉
V
��

(In − 2|Ψ0〉〈Ψ0|)(cos(θk )|F〉− sin(θk )|T 〉)

=

cos(θk )|F〉−sin(θk )|T 〉−2|Ψ0〉(cos(θk )〈Ψ0|F〉−sin(θk )〈Ψ0|T 〉)

Yuck!
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Grover’s algorithm

The action starts here!

Some more sums!

Not forgetting the overall sign flip, we are left with |Ψk+1〉 =

− cos(θk )|F〉+sin(θk )|T 〉+2|Ψ0〉(cos(θk )〈Ψ0|F〉−sin(θk )〈Ψ0|T 〉)

This can be expanded!

By definition:
I 〈Ψ0|F〉 = cos(θ0)

I 〈Ψ0|T 〉 = sin(θ0)
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Grover’s algorithm

The action starts here!

The never-ending calculation ...

Using these identities, |Ψk+1〉 =

− cos(θk )|F〉+sin(θk )|T 〉+2|Ψ0〉(cos(θk )cos(θ0)−sin(θk )sin(θ0))

Also, |Ψ0〉 = cos(θ0)|F〉+ sin(θ0)|T 〉.

This gives |Ψk+1〉 =

|F〉. (− cos(θk ) + 2cos(θ0)(cos(θk ) cos(θ0)− sin(θk ) sin(θ0)))
+

|T 〉. (sin(θk ) + 2sin(θ0)(cos(θk ) cos(θ0)− sin(θk ) sin(θ0)))
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Grover’s algorithm

The action starts here!

Some basic trigonometric identities:
We now appeal to some basic trigonometry:

Very useful identities:

I

cos2(θ0) =
1
2

+
1
2

cos(2θ0)

I

sin2(θ0) =
1
2
− 1

2
cos(2θ0)

I

sin(θ0) cos(θ0) =
1
2

sin(2θ0)
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Grover’s algorithm

The action starts here!

Approaching a final answer !
Using these basic trig. identities:

|Ψk+1〉 = |F〉 (cos(θk ) cos(2θ0)− sin(θk ) sin(2θ0))
+

|T 〉 (sin(θk ) cos(2θ0) + cos(θk ) sin(2θ0))

Reducing further,

|Ψk+1〉 = cos(θk + 2θ0)|F〉+ sin(θk + 2θ0)|T 〉

|Ψk+1〉 = cos(θk+1)|F〉+ sin(θk+1)|T 〉

where θk+1 = θk + 2θ0.
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Grover’s algorithm

The action starts here!

The Grover operator is a rotation.

At each step, the Grover operator:

“Rotates the state away from |F〉, and towards |T 〉,
by an angle of 2θ0 = 2 sin−1

(
1√
N

)
∼ 2√

N
.”

Points to remember

1. |F〉 and |T 〉 are orthogonal. — i.e. at an angle of π
2

2. The starting state |Ψ0〉 is at an angle of θ0 ≪ π
2 to |F〉.

After π
√

N
4 steps, the state is (approximately) |T 〉.
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Grover’s algorithm

The action starts here!

Grover’s algorithm — some questions!

1. How close is the final state to |T 〉?

I What does this mean in terms of probabilities?

I Does this get better, or worse, as N increases?

2. What happens when we do too many steps?

3. The rotations are very ‘geometric’
— can the whole algorithm be seen in these terms?



QUCO — Lecture 11

Grover’s algorithm

Grover through the looking-glass

The Grover operator as reflections
Changing the sign of a branch is a reflection:

!"#

!$#

!%#

&!"#'(')!$#'('*!%#
+

&!"#',')!$#(*!%#

+

Changing the sign of the |1〉 factor is
a reflection in the plane spanned by |0〉, |2〉.
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Grover’s algorithm

Grover through the looking-glass

The Grover operator as 2 reflections

Both the simple
U = I − 2|x0〉〈x0|

and the (slightly more complex)

V = In − 2|Ψ0〉〈Ψ0|

oracles describe reflections.

Some basic geometry:
The product of two reflections is a rotation ...
through twice the angle between the planes of reflection.
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Grover’s algorithm

Grover through the looking-glass

2 reflections make a rotation

I U = I − 2|x0〉〈x0| reflects through:

the hyperplane perpendicular to |x0〉.

I V = In − 2|Ψ0〉〈Ψ0| reflects through:

the hyperplane perpendicular to |Ψ0〉 = 1√
N

∑N−1
x=0 |x〉.

The angle between these planes is θ0 = sin−1 (〈Ψ0|T 〉).

At each iteration, there is a rotation of 2θ0.
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Grover’s algorithm

Grover through the looking-glass

An exercise

Exercise:

In the |T 〉, |F〉 plane, draw:

1. The initial state.

2. The two reflections & (hence) the Grover rotation.

3. The final state.
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Time for filling in student 
feedback sheets



Grover’s algorithm revisited

Recall the Grover iterator Ĝ is the product of two 
reflections.
But there’s a very simple geometric fact:
A double reflection = rotation by twice the angle 

between the planes of refelction. 

θ

2θ



Recall TF 000 sincos θθψ +=

1st reflection is through T

2nd reflection is through 0ψ

The angle between these `planes’ is 000 sin   : θψθ =T

At each iteration, therefore, we 
rotate the state by an angle 02θ

Bingo!  It really was simple after all.

Grover’s algorithm revisited



What if there’s more than one solution?

If f(x) has M values of x for which f(x)=1, 

then the target state is ∑
=

=
1)(:

1

xfx
M

xT

so

and TF N
M

N
MN += −

0ψ

∑
=

−
=

0)(:

1

xfx
MN

xF

Everything follows through as before, except the 
angle between the planes is N

M== 00 sinθψ T

Again we rotate by 2θ0 at each iteration, so we reach T

in 2
2. 0

πθ ≈k i.e., M
Nk

4
π

≈



What if there’s more than one solution?
This is fine, so long as we know how many solutions 
there are. But what if we don’t know how this? 

How do we know when to stop?

What can go wrong? At step k the state is

TF ])12sin[(])12cos[( 000 θθψ +++= kk

If we go too far we can miss the target, however, if we 
continue we go around and around.

We now have an essentially periodic function, 
and all we need to do is find its period!!



Quantum Counting
By combining Grover’s algorithm with Shor’s period 
finding algorithm, we can count the number of 
solutions. Here a circuit to achieve it:

read out some multiple of the reciprocal period

F† F

G G2 G2n-1
0ψ

0 }



Quantum Counting

read out some 
multiple of the 
reciprocal period

F† F

Gx0ψ

0 }

Surprisingly, still only                queries are needed.)( NO

A shorthand notation for this circuit is:



QUCO topics covered
Quantum States:

• normalization
• probabilities for measurement
• notation: bras, kets, vectors, inner products, etc.
• entanglement/non-factorizable states
• tensor products



QUCO topics covered
Gates/Evolution:

• linearity
• unitarity
• tensor products
• special gates:
• universal sets of gates
• multiqubit Hadamard
• QFT and its implementation

etc. Toffoli, XOR, , , kRH



QUCO topics covered
Algorithms:

• Deutsch alg.
• one-out-of-four search
• Simon’s alg.
• Deutsch-Jozsa alg.
• Shor’s alg.
• Grover’s alg. (and its geometric interpretation)
• Quantum counting


