
COM000051

Degree Examinations 2011-12

Department of Computer Science

Principles of Programming Languages

Time allowed: Two hours

Candidates should answer question 1 in Section A, one question from Section B and
one question from Section C.

Calculators may be used in this examination.

Do not use red ink.

Page 1 of 8 Turn over.

Section A: You must answer this question

1 (20 marks)

(i) [2 marks] Some programming languages are typeless. Give brief arguments for and
against this language-design decision.

(ii) [2 marks] Distinguish between static typing, and strong typing.

(iii) [2 marks] Which of the following argument-passing methods do not allow a
procedure’s body to modify the value of the argument in the caller?

• call-by-value

• call-by-reference

• call-by-name

(iv) [2 marks] Briefly describe the grammatical ambiguity in conventional ‘if’ statements.

(v) [2 marks] Distinguish between a conditional expression and a conditional statement,
and give an example of a language that has both types of conditional construct.

(vi) [2 marks] What is the principal difference between a function in Haskell, and a
method in Java?

(vii) [2 marks] What does it mean to say that the concurrency operator is transitive?

(viii) [2 marks] What does it mean for a system of tasks to be deadlocked?

(ix) [2 marks] What is a binary semaphore, and what is it used for?

(x) [2 marks] Why in a nested task structure must a parent task never terminate before a
child task?

Page 2 of 8

COM000051

Section B: Answer one question from this section

2 (40 marks)

(i) [10 marks] Most languages use static scoping in preference to dynamic scoping.
Explain these terms, and briefly say why static is the more popular design choice.

(ii) [12 marks] Consider the following skeleton of an Ada-like program:
procedure Main is
X, Y, Z : Integer;
procedure Sub1 is
A, Y, X : Integer;
begin

-- Sub1 body
end;

procedure Sub2 is
A, B, Z : Integer;
begin
-- Sub2 body
end;

procedure Sub3
A, X, W : Integer;
begin
--- Sub3 body

end;
begin

--- Main body
end;

For this program, assume that the language uses dynamic scoping (unlike actual Ada
programs). For each of the following calling sequences, state which variables are visible
during the execution of the last procedure in the sequence. You must state the variable
name, together with the name of the subprogram in which is is declared.

(a) [3 marks] Main calls Sub1; Sub1 calls Sub2; Sub2 calls Sub3.

(b) [3 marks] Main calls Sub1; Sub1 calls Sub3.

(c) [3 marks] Main calls Sub1; Sub1 calls Sub3; Sub3 calls Sub2.

(d) [3 marks] Main calls Sub3; Sub3 calls Sub2; Sub2 calls Sub1.

Page 3 of 8 Continued.

(iii) [18 marks]

(a) [4 marks] Briefly explain what is meant by type inference.

(b) [14 marks] The following are two function definitions in Haskell. In each case
deduce the most general type. You must describe the sequence of steps that you
use to reach your result.

a) (6 marks)

map f [] = []
map f (x:xs) = f x : map f xs

b) (8 marks)

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Page 4 of 8

COM000051

3 (40 marks)

(i) [8 marks] A language is said to have the property of referential transparency if
replacing any expression by its value does not effect the meaning of the program. Many
pure functional languages, such as Haskell, have this property.

(a) [4 marks] Why would referential transparency be useful for a language
designed for writing concurrent programs?

(b) [4 marks] Explain, with an example, a feature of scheme that prevents it from
being referentially transparent.

(ii) [12 marks] The specification for scheme states that all implementations must be
‘properly tail-recursive’.

(a) [2 marks] Briefly explain what is meant by a tail-recursive procedure.

(b) [6 marks] Give actual programming examples (in a language of your own
choice) of a procedure that is not tail-recursive, together with a version of a
procedure with the same function that is tail-recursive. You must show the code
for the whole procedure, but small errors in syntax will not lose marks.

(c) [4 marks] In what way is the tail-recursive version of a scheme procedure
more efficient than a non tail-recursive procedure?

(iii) [20 marks] The following two scheme procedures, (expt b n) and
(fast-expt b n) calculate the value of bn, for integer n.

(define (expt b n)
(if (= n 0)

1
(* b (expt b (- n 1)))))

(define (fast-expt b n)
(cond ((= n 0) 1)

((even? n) (square (fast-expt b (/ n 2))))
(else (* b (fast-expt b (- n 1))))))

where (even? n) returns #t if n is an even number, and (square x) returns x2.

(a) [10 marks] Explain how each of these procedures calculate the value of bn

(b) [10 marks] A user tested the speed of these by evaluating the following

Page 5 of 8 Continued.

expressions:

1. (expt 2 12345)

2. (fast-expt 2 12345)

3. (expt 2 123450)

4. (fast-expt 2 123450)

and found that evaluation 1 was 23× slower than evaluation 2, and evaluation 3
was 487× slower than evaluation 4

Explain why fast-expt is the faster, and why its speed improves relative to
expt for larger values of n.

Page 6 of 8

COM000051

Section C: Answer one question from this section

4 (40 marks)

(i) [6 marks] What are monitors used for in concurrent programming languages?

(ii) [10 marks] Explain how Ada and Java support monitors. What are the main
differences between the approaches of the two languages.

(iii) [12 marks] The following Ada code implements a broadcast facility. Explain in detail
the behaviour of this code as it is used by client tasks.

protected type Broadcast is
entry Await;
procedure Release(N : positive);

private
Number : integer := 0;

end Broadcast;

protected body Broadcast is

entry Await when Number > 10 is
begin
if Await’count = 0 then
Number := 0;

end if;
end Await;

procedure Release(N : positive) is
begin
Number := Number + N;

end Release;

end Broadcast;

(iv) [12 marks] Write a Java class that corresponds to this facility.

Page 7 of 8 Turn over.

5 (40 marks)

(i) [10 marks] A message-passing facility within a concurrent programming language
can be defined in terms of the following characteristics: level of synchronisation, naming
and type of message. Explain, briefly, each of these three terms.

(ii) [10 marks] Using the above terms describe the Erlang model of message passing.
(Your solution should include brief descriptions of the language features.)

(iii) [10 marks] Define the properties of the Ada select statement as it is used in
conjunction with accept statements.

(iv) [10 marks] A server task controls membership of a club. Other tasks can Join, Leave,
Suspend or Un-suspend their membership of the club. At most there can be only 100
members (i.e. members that are active or have suspended their membership). Give the
outline of an Ada task that implements this membership scheme using message passing.
The task should terminate if there are no members and no tasks exist who could Join.

Page 8 of 8

COM000051

Department of Computer Science

Degree Examinations 2011-12

Principles of Programming Languages

Marking Notes

9

Marking Notes

Answers for Section A: You must answer this question

10

COM000051

Question 1 (20 marks)

Part (i) [2 marks]

• For: easy to implement interpreter.

• Against: type errors not detected until run-time.

• . . . etc.

Part (ii) [2 marks]

Static typing implies that all type checking is done before run-time . . . but some type
errors can still occur at run-time.

Strong typing implies that all type errors are detectable, whether statically or
dynamically.

Part (iii) [2 marks]

by-name; by-value

Part (iv) [2 marks]

if _ then if _ then _ else _

. . .else could be associated with inner or outer if

Part (v) [2 marks]

• expression returns the value of the consequent or alternative

statement doesn’t!

• Java

Part (vi) [2 marks]

Methods may contain side-effects, such as assignment. Haskell functions are ‘pure’.

Part (vii) [2 marks]

P || Q and Q || R -> P || R

Part (viii) [2 marks]

Tasks are blocked and can never become unblocked - no progress possible for these
tasks. A cycle of dependencies exists for blocked the tasks.

Part (ix) [2 marks]

A semaphore that only has the values 0 and 1, used for mutual exclusion only. Wait on 0
blocks.

11

Marking Notes

Part (x) [2 marks]

The child task may access variables (memory) from the parent task.

12

COM000051

Answers for Section B: Answer one question from this section

13

Marking Notes

Question 2 (40 marks)

Part (i) [10 marks]

Static scope is where the appropriate binding is determined lexically, and thus can be
determined at compile-time . . . it is the ‘closest’ binding textually.

Dynamic scope is where the binding is determined by the call-sequence of program
blocks . . . it is the ‘latest’ binding made a run-time.

Part (ii) [12 marks]

Sub-part (a) [3 marks]

Sub1: A, X, W

Sub2: B, Z

Sub3: Y

Sub-part (b) [3 marks]

Sub3: A, X, W

Sub1: Y

Main: Z

Sub-part (c) [3 marks]

Sub2: A, B, Z

Sub3: X, W

Sub1: Y

Sub-part (d) [3 marks]

Sub1: A, Y, X

Sub2: B, Z

Sub3: W

Part (iii) [18 marks]

Sub-part (a) [4 marks]

Types of primitives are known, so the type of an expression can be inferred from the
types of its components. This means that, in such a system, it is not necessary for a
programmer to explicitly state the types of every name.

14

COM000051

Sub-part (b) [14 marks]

[Deduction seen in the lectures]

• map :: s -> [r] -> [q], since it is a function of two
arguments one of which is a list, and the result is a list (from the first
case).

• Second case⇒ s is a function, p -> t

• From use of f x in the second case, p = r (element of the [r]
argument), so map :: (r -> t) -> [r] -> [q]. But f x is
an element of the result list⇒ t = q.

• So, final type is map :: (r -> q) -> [r] -> [q].

[Unseen]

a) foldr :: a -> b -> [c] -> b from first case

b) a = (p -> q -> r) from application in second case

c) r = b — final result of foldr (from second case)

d) q = b — result of foldr (from second case)

e) q = c — element of third argument, from application of f x in second
case.

f) Thus foldr :: (c -> b -> b) -> b -> [c] -> b

15

Marking Notes

Question 3 (40 marks)

Part (i) [8 marks]

Sub-part (a) [4 marks]

Referential transparency implies that expressions’ values only depend on the value of
their sub-expressions. So non-dependent sub-expressions could be evaluated
concurrently – there are no side-effects.

Sub-part (b) [4 marks]

Side-effects such as assignment — (set! ...) — prevent referential transparency.

e.g. (define x 10)
(* x x)
(set! x 20)
(* x x)

The two (* x x) expressions have different values – boring, but true!

Other examples are acceptable.

Part (ii) [12 marks]

Sub-part (a) [2 marks]

A tail recursive definition is one in which the only recursive cases are tail-calls. A tail-call
is where the recursive call is the value of the function.

Sub-part (b) [6 marks]

Non-tail call (a linear recursive definition):

(define (factorial n)
(if (= n 1) 1 (* n (factorial (- n 1)))))

A tail recursive version (iterative):

(define (fact-iter product counter max-count)
(if (> counter max-count)

product
(fact-iter (* counter product)

(+ counter 1)
max-count)))

where (factorial n) ≡ (fact-iter 1 1 n)

Sub-part (c) [4 marks]

16

COM000051

Tail recursion is equivalent to iteration in that it requires constant control-stack space,
whereas a (linear) recursive version requires linearly-increases control stack space. This
‘optimisation’ is required in scheme and is available in some compilers for other
languages e.g. gcc.

Part (iii) [20 marks]

Sub-part (a) [10 marks]

expt works by using the identity xn = x× xn−1.

fast-expt uses the identity xn = (xn/2)2 for even n otherwise as expt.

Sub-part (b) [10 marks]

Answer will include:

• Half the number of multiplies are required for even exponents.

• Every odd exponent is followed by a call with an even exponent (since n− 1
is even for odd n).

• Hence, for fast-expt x2n requires one additional multiplication
compared with xn, whereas it requires n more for expt. This is the reason
for the speed difference.

• Thus the time increases linearly forexpt, but logarithmically for
fast-expt.

NB Marks will be given for a less precise description than the above, providing
the fundamental concepts are covered.

17

Marking Notes

Answers for Section C: Answer one question from this section

18

COM000051

Question 4 (40 marks)

Part (i) [6 marks]

Bookwork. Main use is to provide mutual exclusion. Also supports encapsulation.

Part (ii) [10 marks]

Bookwork.

Ada supports protected object (PO) that support mutual exclusion by definition. Java
has synchronized methods. A class in Java can have synchronized and
non-synchronized methods. In Ada functions have only a read lock on the PO and so
concurrent reads are possible.

Condition synchronization in Ada is via barriers to PO entries. In Java it is via notify and
notifyall methods.

Part (iii) [12 marks]

Unseen problem; testing the ability to read relatively straightforward code.

Initially the barrier on the Await entry is false and hence any call on Await will suspend.
Calls to the procedure Release will result in the value of ’Number’ increasing (Note type
of parameter is positive and hence N must be at least 1.

All callers to Await will block until Number get a value greater then 10.

Part (iv) [12 marks]
package monn;

public class Doer {
private int value, count;

public Doer() {
value = 0;
count = 0;

}

public synchronized void await(){
try{
count = count + 1;
while (value < 10) wait();
}
catch (InterruptedException e){

System.out.println("exception raised");
}
count = count - 1;
if (count == 0) value = 0;

}

public synchronized void release(int n){

19

Marking Notes

value = value + n;
notifyAll();

}
}

Exception only gives 2 marks - solution could notifyAll only when value goes above 10.

20

COM000051

Question 5 (40 marks)

Part (i) [10 marks]

Bookwork. Syn always has message received after sent. If no constraint on sender then
asynchronous model. If wait for message to be received then synchronous model. If
wait for reply to be returned then remote invocation. (4 marks)

Naming is either direct, or via an intermediary such as a mailbox or channel. (2 marks).
It can be symmetric or asymmetric. (2 marks)

Type of message is either a predefined, usually scalar type, or any supported type in the
language. (2 marks)

Part (ii) [10 marks]

Erlang uses asynchronous, asymmetric, direct naming and any type including functions.
Buffers cannot become full (4 marks). Each related language feature shoudl be briefly
described for 6 marks (Bookwork).

Part (iii) [10 marks]

Bookwork. The select statement is used to non-deterministically (1 mark) choose
between different accept statements (2 marks). Each could have a guard (2 marks). An
execution of the select statement means that one open alternative with a waiting task is
chosen for execution (2 marks). If no such task then task is suspended (1 mark). The
select statement can also have a terminate alternative (1 mark) and delay or else parts
(1 mark). Also note that guards are not reevaluated when calls come in (2 marks).

Part (iv) [10 marks]

Unseen problem.

The server task must define three entries:

task Membership is
entry Join;
entry Leave;
entry Suspend;
entry Un_Suspend;

end Membership;

The body of this task needs a loop and a select statement:

task body Membership is
Members : integer := 0;

begin
loop
select
when Members < 100 do
accept Join;

21

Marking Notes

Members := Members + 1;
or
accept Suspend;

or
accept Un_Suspend;

or
accept Leave;
Members := Member - 1;
-- perhaps check is members goes negative
-- or put a guard on this entry

or
when Members = 0 do
terminate;

end select;
end loop;

end Membership;

22

