COMO000051

BSc, BEng, MEng, MMath Examinations, 2013-2014
ALL UNDERGRADUATE COMPUTER SCIENCE PROGRAMMES

Stage Two

PRINCIPLES OF PROGRAMMING LANGUAGES (POPL)

Open Examination

Issued at:
Noon: Sum/1/Mon (21st Apr)

Submission due:
Noon: Sum/4/Wed (14th May)

Your attention is drawn to the Guidelines on Mutual Assistance and Collaboration in
the Students” Handbook and the Department’s ‘Guide to Assessment Policies and
Procedures’ (http://www.cs.york.ac.uk/exams/statementonassessment/).

All queries on this assessment should be addressed to
Alan Wood (Part 1) amwl1@york.ac.uk, or
Andy Wellings (Part 2), andy.wellings@york.ac.uk.

There are two parts in this assessment. You must complete both parts, which carry
equal marks. Each part is divided into tasks, and the relative weight for each task

is indicated as a percentage of the total marks for the assessment. All tasks must be
attempted.

Submission

e All submissions should be done electronically, using the Department’s online
submission system Hardcopy submissions will not be accepted.

* You should submit a zip file that contains the following:
1. A directory called Part|I|and a directory called Part[II]

2. The directory Part must include A pdf E| file of your answer to Task
called Task1].pdf

3. In the directory Part[II} the following should be included:

1https://www.cs.york.ac.uk/submit/index.php

2PDF output from a Word document is available by using the Departmental Word installations. PDF
output from a LaTeX document is obtained by using pdflatex.

http://www.cs.york.ac.uk/exams/statementonassessment/

COMO000051

— A directory called TaskZ|that contains the source code for your solution
to Task [2l Do not use any subdirectories.

— A directory called Task3|that contains the source code for your solution
to Task 3| It should also contain a pdf file that describes your approach
to implementing Java monitors using semaphores. Do not use any
subdirectories.

— A directory called Task4]| which contains a pdf file with your answer to
Task 4l

COMO000051

Part I.

There is one task in this part:

Write an essay, of approximately 2500 word (not including program code),
with the following specification:

Title:

Stateful versus Stateless Programming

Abstract The real-world is a “stateful” place: cars move, food gets eaten, tress grow etc.

In every case some property of the object changes, while its other properties stay
the same. We think of this as a change in the object’s state.

It is obvious, therefore, that any programming language that can be used to model
the real-world must have means for changing the state of the representations of
the objects that it is modeling. However, there are many programming languages
that do not have explicit state-mutation constructs, and yet are Turing-complete,
implying that they can compute precisely the same things as stateful languages.

This essay will discuss the pros and cons of stateless and stateful programming
languages and styles, analysing the ‘obvious’ statement given above. Examples
of computations which are better programmed in one style than the other will
be given, ending with a conclusion about how to determine which style is most
appropriate in various programming applications.

Notes

Ll

Start your essay with the exact title and abstract as given above.
Use the principles of writing that were taught in the Stage 1 SKIL module.
Full references, properly formatted, to sources of material must be givenﬁ

No more than half of the items in your bibliography can be to URLs alone — the
others must be to ‘printed” sources.

3 About 5 typed (10pt), single-spaced, A4 pages.
4Remember, we can Google as easily as you!

COMO000051

5. You must include appropriate program illustrations from at least three differ-
ent programming languages, and these must all be syntactically correct. These
illustrations should not be counted as part of the 2500 words of the essay.

6. In order to pitch the essay at the correct level, you should assume the reader has
the technical knowledge of a typical CS student just starting Stage 2, who has not
yet attended the POPL module.

Marking

Points for which marks will be given include:
* (Clarity of explanation.
* Quality and choice of references.
* Appropriate program examples.
* Quality of argument.
¢ Clarity of essay structure.
* Quality of the conclusion.

A sliding penalty will be applied if the essay is too long or too short. Word counts
within +10% will recieve no penalty.

COMO000051

Part Il.

A semaphore is a very flexible synchronization mechanism. It is often claimed that most
synchronization problems can be solved using semaphores. There are various types of
semaphores, including:

* a general semaphore, which is a non-negative integer: its value can rise to any
positive number

* a binary semaphore which only takes the value 0 and 1: the signalling of a
semaphore which has the value 1 has no effect - the semaphore retains the value 1.

A monitor is a higher level synchronization mechanism. One way to argue that a
monitor is an effective synchronization mechanism is to show how it can implement
semaphores.

Show how you would use Java monitors to implement the functionality of a
general and a binary semaphore. You should submit a Java program that implements a
bounded integer buffer and has two producers, two consumers and a buffer size of 2
(but test your program with a larger number of producers and consumers). The bounded
buffer should use your monitor-implementations of binary and general semaphores
for its synchronization. The problem can be solved with one binary and two general
semaphores (plus some other non-semaphore variables). Do not use any pre-defined
Java utilities (such as those in the java.util packages). Note, the only synchronized
methods that should appear in your program are those needed to implement the

semaphore classes.

Show how you would use two binary semaphores (and any other objects you
might need, e.g. integer counters) to implement the functionality of a Java monitor. You
will not be able to produce a Java program to directly show this. Instead you will have
to illustrate how you would “compile” a Java monitor into a sequence of calls on one or
more binary semaphores. So for example, you would:

For each call to wait () in a synchronized method: Indicate how you would get the syn-
chronization properties of wait () using one or more binary semaphores (and
any other objects you might need).

For each call to notify () in a synchronized method: Indicate how you would get the
synchronization properties of notify () using one or more binary semaphores
(and any other objects you might need).

COMO000051

For each call to notifyAll () in a synchronized method: Indicate how you would get
the synchronization properties of notifyAll () using one or more binary sema-
phores (and any other objects you might need).

You should submit a Java program that implements a bounded integer buffer and
has two producers, two consumers and a buffer size of 2 but test your program with a
larger number of producers and consumers. The bounded buffer should illustrate how
your monitor-based solution to the bounded buffer, when compiled, results in calls on
the Java semaphores (that you implemented in Task [2).

Note 1: With a bounded buffer, the producer and consumer tasks cannot both
be waiting. With other synchronization problems, for example the readers-writers
problems, threads may be waiting for different events to occur. Hence, your translation
from monitors to semaphores should not use any knowledge of the characteristics of
the bounded buffer problem.

Note 2: The only synchronized methods that should appear in your program are
those needed to implement the general semaphore class.

Note 3: Marks are divided equally between your overall translation approach, and
the bounded buffer code.

Assume that you are a concurrent programmer who is confident and com-
petent using semaphores and that you are asked to program in a language that ONLY
supports monitors. Discuss the advantages and disadvantages of creating semaphores
using monitors and then solving all your synchronization problems using semaphore-

style solutions.

Use of JavaPathfinder

I recommend that you use Java Pathfinder to help convince yourself that your programs
are correct. However, model checking is very slow and memory intensive. You will only
be able to model check small programs.

