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WARNING

A
• These notes are ‘extended’ versions of the lecture slides.

• They do not constitute a self-contained lecture course . . . you will not
be able to pass the exam solely by reading these notes.

• There are likely to be errors of varying degrees of importance here
. . . what is taught in the lectures and practicals is definitive. Correc-
tions may be made to the notes during lectures or practicals.
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Languages

Languages

This module is about using

Languages for Modelling

⇒
Abstraction → Pattern discovery

+
Composition → Glue

Programming languages ⇒


Computational patterns

+

Calculational glue

6
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1 Programming Languages

1.1 Purposes

The following will be dealt with in depth in other modules (e.g. SYAC), However we
need to cover some material here.

Programming languages can be used for a variety of purposes:

• Means for ‘making’ computers compute . . . obviously!

But they are (obviously) languages, so also have the usual properties of any language:

• Means of communication

• Means of organising ideas ⇒ thinking tools

The last two points beg the question, “About what?”

• Natural languages are used to communicate and organise ideas ‘about’ many things:

food, beauty, beliefs, literature, politics . . .

For the purposes of POPL, we will consider programming languages as being ‘about’ pro-
cesses
⇒ a useful programming language must be able to be used for:

describing
analysing
designing
building

. . .


Computational Processes

So we need to consider what things a programming language needs to fulfill these purposes.
However, we also need to be able to talk about programming languages as languages
⇒ we need to specify their:

• Form (syntax), and

• Meaning (semantics)

These are the fundamental Elements of Language in general

7
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2 Elements of Language

2.1 General

Elements of Language

Abstractly a language is an infinite set of strings — sentences.

⇒ not every possible combination of characters is a sentence,

⇒ we need a way of specifying which strings are in the language,

. . . and these strings can be infinite.

This sounds like a difficult task, but there is a standard way of specifying infinite sets of
infinitely long strings

. . . in a finite way:

8
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2.2 Language and MetaLanguage

It’s vital to distinguish between what you’re talking about, and what you’re talking with . . .

Object Language

is the language being described etc.

Meta Language

is the language of description: the language being used to describe the object language.

Since all languages involve (strings of) symbols, it’s vital that you know which are in the
object-language, and which are in the meta-language.

Often this is easy, but . . .

Some symbols are used in both the object- and the meta-languages! For example:

• the semi-colon at the end of a CUP definition

• ‘=’ in some formal mathematics

9
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2.3 Backus-Naur Form

Backus-Naur Form (BNF) is a way of specifying a language — set of sentences — by giving
a the rules that any string in the alphabet of the language must obey in order to be called a
‘sentence’.

The rules are called the language’s

Syntax

or grammar
BNF could, in principle, be used to specify any language, including (most) “natural”, or

human, languages. However, we shall only use it in the context of specifying programming
languages.

In programming language terms,

a sentence is a program

⇒ the BNF specification of a programming language gives the syntax rules that any grammatically-
correct program in that language must follow.

There are many (slightly) different varieties — “dialects” — of BNF so . . .

Be prepared to deal with different notations when reading BNF specifications.

For POPL we shall be using a very simple version . . .

10
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A BNF specification consists of a set of

Productions of the form:

s ::= a b c ... | d e f ...| ...

where:

s is some symbol/name/identifier called a non-terminal symbol,

a b c ... are symbols which may be non-terminals or terminals,

| is read as “or”,

::= is read as “is defined by”, or “can be” etc.

BNF Facts

• Every non-terminal must appear on the LHS of at least one production,

• Terminals are not defined by any production,

• ::= and | are symbols in the language of BNF, not of the language being defined:

⇒ they are meta-language symbols.

. . . since BNF is a language which describes languages.

11
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Example

A C/C++ or Java-like declaration can be written:

type ::= INT | FLOAT | BOOLEAN | CHAR

declaration ::= type IDENTIFIER

Notes

• This specification has:

– Two non-terminals . . . the LHSs of the productions

– Five terminals . . . symbols that don’t appear as LHSs.
⇒ they are undefined

• declaration is defined in terms of type.
⇒ this lets us design the specifications in a more structured way.
⇒ recursive (mutually self-referencing) productions are allowed (see later)

• It’s conventional (but not required) to CAPITALIZE terminals.
⇒ type ::= INT | FLOAT | BOOLEAN | CHAR would be preferable
. . . this makes it clearer that:

a) these are terminals

b) they stand for something that’s defined elsewhere
⇒ they do not (necessarily) represent the actual string of characters in the symbol

⇒ we could (should?) write:
type ::= INTEGER | FLT | BOOL | BURBLE
and it would still represent the same syntactic entity (abstractly).

12
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2.3.1 BNF FAQs

? How are ‘symbolic’ terminals such as:

; ( , + - /*

represented?

⇒ They stand for themselves

? What happens if I want to use a meta-symbol in the object language?

⇒ Either:

1. Quote it:

There are many ways — in BNF notations — to quote (a string of) symbols,

e.g. ’ | ’, " ::= ", . . .

. . . but then the ’ or " symbols become meta-language symbols!

⇒ how to quote quotes?

or

2. Give it a terminal symbol name, e.g. BAR or DEFINES,

⇒ 2 is best!

? How can a finite set of (finite) productions define an infinitely long sentence?

2.3.2 Recursive Productions

Example

binary_number ::= ’0’ | ’1’
| ’0’ binary_number
| ’1’ binary_number

binary_expression ::= binary_number
| binary_expression AND binary_expression
| binary_expression OR binary_expression
| NOT binary_expression

...
| ’(’ binary_expression ’)’

It would, of course, be preferable to specify the binary_number production as:

binary_number ::= ZERO | ONE
| ZERO binary_number
| ONE binary_number

13
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and the last part of binary_expression as:

binary_expression ::= . . .
...

...
| LPAREN binary_expression RPAREN

? Where do the terminals come from?

⇒ It’s normal to have some external definition of what strings are represented by terminal
symbols.2

Usually these definitions are in a language different form BNF . . . often the language of
regular expressions (see most editors, advanced search/replace dialogues etc.)

The process of creating a ‘stream’ of terminal symbols, or tokens (or ‘lexical items’, or
‘lexemes’) from the string of characters which is the program, is called

Lexical Analysis

The process of checking the stream of lexical tokens (non-terminals) against the BNF spec-
ification is called:

Syntax Analysis

Lexical analysis is done by an algorithm (program) called a lexer (or ‘scanner’).

Syntax analysis is done by an algorithm called a parser.

Other modules3 look in detail into these processes.

POPL requires the ability to read and understand BNF specifications in order to discuss
language structures.

2Quoted strings are terminals, remember.
3and the POPL practicals

14
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2.4 BNF Example

1 program ::= stmt_list
2 stmt_list ::= stmt
3 | stmt_list SEMI stmt
4 stmt ::= ID ASSIGN expr
5 | WHILE ID DO stmt_list
6 | BEGIN stmt_list END
7 | IF expr THEN stmt
8 | IF expr THEN stmt ELSE stmt
9 expr ::= NUMBER | BOOLEAN | ID
10 | expt BINOP expr
11 | LPAREN expr RPAREN

Notes

program initial non-terminal.

• root of the syntax tree

• the “thing” being defined

stmt_list recursive definition

⇒ infinite sequence of statements is allowed.

⇒ Must have at least one base-case.

SEMI not using quoted symbols, such as ‘;‘

stmt alternative forms for a ‘statement’

⇒ a case analysis

WHILE. . . stmt_list Note the indirect recursion: a case of a stmt is being defined in terms
of a stmt_list which uses the definition of stmt . . .

BEGIN. . . END defining a compound statement

. . . syntactically a single stmt

BEGIN. . . END could be ‘{’,‘}’, ‘begin’,‘end’, . . . or special indentation etc. As long as the
lexer produces the BEGIN and END tokens correctly, it doesn’t matter syntactically what
the language designer’s choice was.

IF-THEN, IF-THEN-ELSE different forms of conditional. Use recursion again.

BINOP intended to represent any binary operator: +, −, / || etc.
⇒ syntax doesn’t need to distinguish between them

IF-THEN, IF-THEN-ELSE What’s the problem here?!!

⇒ This definition makes the grammar ambiguous.

15
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. . . How can this be corrected?

⇒ See SYAC

16
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2.4.1 Parsing Example

Is the following program accepted by the grammar in section 2.4:

x := true;

while y do

begin

y := x & y;

x := false;

end;

Work through this by hand as an exercise!

Notes This, of course, depends on the way the lexical structure is specified — for
instance, if the string of characters “while” were specified to be translated into the
token LPAREN by the lexer, then it’s unlikely that the above program would conform
to the grammar.

So, make some ‘reasonable’ assumptions about what stream of token the lexer would
produce for the program and go from there!

17
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2.5 Meaning and Correctness

Is the program fragment in section 2.4.1 correct?

To answer this, you need to know the result of the question posed above . . . and even then
you may not be able to say whether it’s correct or not! So why’s that?

Obviously, if a program — a string of tokens — is grammatically incorrect, then it is
incorrect! But what about strings of characters that are syntactically correct, but ‘do the
wrong thing’? We would regard those as incorrect too.

Notes

• There is an infinitely large number of syntactically / grammatically incorrect programs

. . . there is even an infinitely large number of syntactically correct programs for a
particular language, that are incorrect for all other languages.

⇒ a string of text is only syntactically correct or incorrect relative to a language’s gram-
mar

• A syntactically incorrect program is, literally, nonsense.

⇒ it cannot be given any meaning

So, what does it mean for a syntactically correct program to have ‘errors’?

⇒ it does not mean what


you

the designer
the customer

...




thinks it
designed it
specified it
...

 to mean!

A program is ‘correct’ relative to a specification

⇒ The specification must say what the program must mean
The meaning of a program is given by its

Semantics

. . .

18
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2.6 Semantics4

The subject of semantics is quite complex, and requires a formal mathematical approach to
be precise.

In POPL I shall imprecisely use English to convey the meanings of programs. However,
I shall base the ‘natural language’ discussions on the fundamental principles of one common
formal way of describing the semantics of programs — Denotational Semantics. An excellent
full treatment of this is in the book by David Schmidt [2].5

Abstractly, the meaning of a program written in a language specified (formally) by a BNF
grammar is a function which takes syntactical entities as input, and maps these to some
mathematical ‘object’ or ‘model’:

meaning : syntax→ model

Informally we shall say that the meaning of the elements of a programming language is
the Computational Process that is generated when it is executed or evaluated. Of course, this
begs any number of questions such as:

• what is evaluation

. . . this will be answered to some extent later

• what is meant by a ‘computational process’

. . . this will be side-stepped in POPL, although Abelson and Sussman’s wonderful book [1]
makes this clear

For our purposes we can say that the meaning of a program can be described in terms of:

• the meanings of its primitive expressions,

• the meanings of its compositional mechanisms, which form new expression from old,

• the meanings of its abstraction mechanisms, which encapsulate the meanings of their com-
ponent expressions.

The next sections will deal with these in detail.

4As with the topic of syntax, semantics is properly dealt with in other modules (such as PCOC and CLAD),
so we won’t cover it in detail here.

5PDF available at: http://www.bcl.hamilton.ie/b̃arak/teach/F2008/NUIM/CS424/texts/ds.pdf

19
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3 Elements of Programming

Programming languages are characterised by what they provide in three areas:

1. Primitive Expressions

2. Composition Mechanisms, and

3. Abstraction Mechanisms

⇒ languages differ in essence when these differ
⇒ languages are essentially the same if they provide (essentially) the same sets of charac-

teristics . . . despite how they “look”.
Remember:

All languages are computationally equivalent

. . . Turing Completeness

While this is a very important concept, it merely tells us that any language can be used to
create programs that compute anything that is computable. However it does not say that it’s
as easy (or difficult) to describe a particular computation in one language as it is in another.

All that is needed to make a language Turing Complete is a way of specifying what to do
next on the basis of the current state of the ‘universe’. In other words, all that’s needed is a
‘conditional branch’ !

20
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3.1 Primitive Expressions

1. Primitive Expressions

are the atoms of the languages and represent the simplest ‘things’ that the language can
express (hence the name).

These are not ‘values’ (see later) but are representations of values.

• It’s convenient — at the moment — to think of programming as dealing with two kinds
of ‘thing:

– data: information that we must manipulate, and

– procedures: the manipulators.
⇒ a language must provide primitive expressions for both (primitive) data and (prim-
itive) procedures.

• Since everything in a programming language consists of sequences of characters, all the
primitive expressions will be character sequences.

However, they should be seen as atomic, unstructured entities.

21
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Examples

Numbers (‘numerals’ etc.) 124 124.0 0124 0x124 124L 124e10

Truth values true #f 0 124

Characters ’x’ ’\n’ ’\033’ $A ’\u0231’ #\x

Strings "hello" ’hello’ ’x’

Identifiers (Variables, Names) x hello O124 %map table $sum $A

123+123

Symbols (‘atoms’ etc.) ’a ’thing :y #f

Primitive Procedures (Operators) + - && ! , ; . * if := : ==

Miscellaneous null nil [] define lambda \ this

super

22
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3.2 Composition

2. Composition Mechanisms

are the methods by that a language provides for forming compound expressions.

⇒ methods for forming expressions from other expressions . . . whether primitive or com-
pound.

• Correspond to phrases in ‘natural’ languages.

• Compound ⇒ has identifiable components

⇒ we must know what these components are.

Examples

• Create a single statement / expression from several.
This includes:

– Constructing ‘blocks’ of statements.
These can then regarded, both semantically and syntactically, as a single state-
ment. Notice that this a good example of a recursive definition . . . the meaning,
or the structure, of a (compound) statement is defined in terms of the meaning or
structure of its component statements, which may themselves be compounds.

pascal: begin stmt stmt ...end

C: { stmt stmt ...}

– ‘Nesting’ expressions.
The same comments apply to the components of an expression possibly being
(compound) expressions.

• Apply a procedure to arguments
This is, in essence, merely another example of composing expressions: the function is
an expression — of a special type — that is composed with a collection of argument
expressions. However, not all languages regard the function part as an expression
(we shall see this later), and so application often needs to be treated as a distinct
composition mechanism.

Java etc.: function ( expr )

Haskell: f x (y*z)

scheme: (g 2 3)

• Sequentially or concurrently join expressions / statements
Some languages have explicit ways of composing expression so that they get evalu-
ated in parallel rather than sequentially. Most6 languages have a way of composing

6You might want to find a language for which this isn’t true!

23
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expressions sequentially so that the order of their evaluation can be made explicit.

Java etc: stmt ; stmt ; stmt

C: expr , expr , expr

occam: par seq

a p

b q

• Conditionally join expressions / statements
Conditional selection of statements/expressions for evaluation is a fundamental re-
quirement of all programming languages

ADA: if _ then _ else _ end if

Java, C++: expr ? expr : expr

• Functional / procedural composition In mathematics, it is possible to take two func-
tions and create a third, using the composition operator (◦), such that:

f ◦ g(x) = f(g(x))

Several modern programming languages have a corresponding way of composing func-
tions. Of course, this is not possible in languages in which functions are not first-class
values, and so this facility is mostly confined to the so-called ‘functional’ languages
such as Haskell, ML and Erlang.
Haskell: f.g x

• Form data structures
Every ‘high-level’ programming language has mechanisms — often many — for com-
posing data elements into structures of data elements. This will be covered more fully
later in the module.

C: struct{ int x; int y; }

union{ int x; int y; }

C++: class{ int x; int y; }

Haskell: [ expr, expr, expr ]

scheme: (cons l xs)

24
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3.3 Abstraction

3. Abstraction Mechanisms

are ways that a languages provides to enable us to hide (irrelevant) details.

Examples

• Naming

• Procedures

• Objects (in the O-O sense)

• Packages, modules

• Interfaces

• Scope

• Data types

• . . .

We shall be dealing with all these in detail later . . .

** Abstraction is the principal way that we control complexity in programming.

⇒ A powerful set of abstraction mechanisms is characteristic of a useful language.
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Values, Names and Expressions

Values, Names and Expressions

• Computation involves transforming information.

• Information in programming languages is represented by values.

• Values are created by expressions.

⇒ Expressions transform information.

• Names refer to values.
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4 Values and Names

4.1 Values

are the carriers of information in computations.

. . . this is quite subtle!

• Values are abstract

⇒ we can’t see (touch / smell ..) them.

. . . they have syntactic representations,

but which are not necessarily unique

• Values are created by, are the result of, or are represented by expressions.

. . . primitive or compound

• Primitive values are created by primitive expressions.

. . . also known as ‘literals’
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4.2 Value Classes

Values have one or more of the following properties:

• Denotable

⇒ values that can be named

• Expressible

⇒ values that can be given by expressions (other than a name).

• Storable

⇒ values that can be stored and retrieved from “memory”.

First-class values are those with all three properties.

Programming languages have values which are not first-class, and these differ between
languages

A fundamental requirement is to know which class a language’s values fall into
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Examples

Language Denotable? Expressible? Storable?

Basic values any ! ! !

procedures / methods / scheme ! ! !

functions Java / C ! 5 5

constants C (K&R) 5 ! !

statement labels C (ANSI) ! 5 5

C (K&R) ! 5 !

Types most ! 5 5

wildcard generic types Java 5 ! 5

arrays most ! 5 !

APL ! ! !
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4.3 Names

are the way values are referenced
⇒ names refer to values.

⇒ We need linguistic means for associating a names with a value.

• This is called binding a name to a value.

A binding

is a definition of a name.

valuename

the binding

Binding is a simple but subtle concept.

⇒ needs a clear head!

This is not the same as assignment!
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4.4 Bindings

Examples

scheme: (define x 10)

(let (x 20) x)

Java / C: float x;

C: const int x = 20;

Take care to understand what the value part of a binding actually is! . . .
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4.5 Binding to a Constant

The value is the constant.

Examples

C: const float pi = 3.1415926;

Java: final static float pi = 3.1415926;

pi 3.1415926

Evaluation rule:

Evaluating the name → bound value
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4.6 Binding to a Variable

A variable is, in programming terms, a storage location large enough to hold the representation
of the value.

The qualification ‘representation of’ is very important to remember, but is often skipped
over (‘elide d’) in informal use. Remember: values are abstract things which may be repre-
sented in different ways ‘in a computer’ — see section 4.1

Example

C: float x;

x · · · · · · · · · · · ·

In this example, the value of x is the storage location
Take care with the term ‘storage location’ . . . this is not the same thing as a byte/word in

a computer’s memory. A storage location has an ‘address’ but, again, this is not necessarily
the same as an address in RAM (or whatever).
• locations are identified by addresses (integers)
⇒ name is bound to an integer . . .

an address, not the contents of the address

Evaluation rule:

Evaluating the name → value contained in the bound variable.

NB Some texts (and computer scientists) are imprecise, and tend to say things like:

“v’s value is 10”

which is wrong, since the value bound to v is not 10, but a ‘variable’ !

What they mean is:

“the value contained in the variable whose storage location is the value bound to v’ is
10”.

but life is too short to always say things like that!

I expect that I shall fall into this imprecision as well . . . beware!!
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4.7 Assignment v. Binding

It is important not to confuse the ideas of assignment and binding:

An assignment

such as:

C / Java: x = 25 * y

changes the contents of the variable bound to x, not the binding of x to the variable.

Pictorially, the assignment can be thought of thus:7

x old value of x

After x = 25 * y . . .

x value of 25 * y

However, if the example expression caused a change in the binding of x, this would be seen
as:

x old value of x

After x = 25 * y . . .

x old value of x

value of 25 * y

The difference shows up if there are other names bound to the same variable as x . . . in
the first case, evaluation of the other names gives the new value, whereas in the ‘re-binding’
case, the other names’ values are not changed.

Most languages do have ways of changing bindings, usually as well as having assignment,
so take care!

7Assuming that x is bound to a variable!
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4.8 Binding Time

A binding declaration says what should be bound to a name, but doesn’t tell you when it
should happen!

Is this context, ‘when’ is limited to two possibilities: statically, or dynamically:

Static Binding

is when the value is bound to a name before the process generated by the program starts
running, and doesn’t change during execution.

Dynamic Binding

is when the binding occurs during program execution.

NB Sebesta [3] chapter 5 has a good treatment of binding.
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Examples

Java: class Pair {Object left, right;};

Pair gloves = new Pair();

Pair politics = new Pair();

The bindings for left and right happen when the objects are constructed(created). This
happens during the execution — at runtime. The bindings are different in the two objects,
that is they refer to different instances of Pair.
⇒ This is dynamic binding.

C: int silly( int y )

{ int x; x = 2*y; return x; }

In this case, we still have dynamic binding, but the value bound to x changes every time
silly is called — since it is a local name (see section 6 et seq..)
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4.9 Names as Values

There are two ways that names can be thought of as values in their own right:

1. Atoms or symbols

2. Pointers
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4.10 Atoms

An atom

is a name that is ‘bound to itself ’

Consequently, a binding to an

{
atom
symbol

}
refers to itself.

This apparently bizarre idea gives rise to the only significant property that atoms have:

An atom is only equal to itself.

Pictorially, a binding of an atom is:
name

Evaluation rule:

evaluating the atom → the atom

There are not many languages that have ‘proper’ atoms in the sense described here . . . some
‘simulate’ them — often with restricted forms of strings — without necessarily guaranteeing
the self-equality property.

This may be because language designers are not generally aware of how useful atoms can be,
especially whenever some form of ‘symbolic’ computation is being built such as Mathematics
(algebra etc.) and Artificial Intelligence applications.

Example

scheme: ’x , ’thing , ’atom , ’1-2 In scheme, the most fundamen-
tal equality test is the (eq? _ _) predicate, which returns #t, or #f depending on
whether its two arguments evaluate to identical values.

So:
(eq? ’x ’x) →#t
(eq? ’thing ’x) →#f
(eq? "thing" ’thing)→#f
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4.11 Pointers

In a variable binding :

name · · · · · · · · · · · ·

the binding is uniquely associated with an address.
⇒ we can say that the

(value of the) binding itself ‘is the address.

Some languages have primitive expression which evaluate to the address that a name is bound
to.

These addresses are usually called pointers . . . values that refer to values.
A pointer binding would, in principle, be though of:

name

pointer value

value

However, in practice it’s always visualised

name

pointer value

⇒ the pointer value normally refers to a variable.

Evaluation rule:

Evaluating the name → address of the value referred to.
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Languages with explicitly usable pointers8 must have two fundamental operations (primi-
tive expressions):

Pointer (value) creation

Need a primitive expression to provide addresses of values.

C: float v;

&v is v’s address

Pointer dereferencing

Once a pointer to a value is available, we need to be able ‘provide’ the value referred to,
for instance within some expression.

⇒ the contents of the variable pointed to must be provided.

For example, in C

C: *p is the variable referred to by the pointer value contained in (the
variable bound to) p.

⇒ ‘the value that p points to’

The following C code snippet shows how pointer dereferencing might be used:

C: float *p; declares a pointer to a float

p = &v; ‘points p at v’

v = *p + 10.0; dereferences p

. . . same as v = v + 10.0;

See Sebesta [3] section 6.9 for more on pointers.

8We’ll see languages later that, although they implicitly ‘have’ pointers, those pointers are not usable —
modifiable etc. — by the programmer.
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Languages with Pointers

• Explicit pointers are in:

C, C++, Pascal, ADA, scheme, and (sort of) in ML (a functional language)

• Java has pointers

→ all object variables ‘are’ pointers.

. . . but this isn’t obvious since:

a) they can’t be changed except to point at another object
→ the pointer value is not expressible

b) dereferencing ‘looks’ the same as non-pointer variables.
→ there is no (explicit) dereferencing mechanism

However, pointers and procedures (methods) mix in subtle ways.

⇒ see section 5.10

Now we have the fundamental principles of Values and Names, we can
consider how to put them together — compose them — to create/compute
new values . . .
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5 Expressions and Procedures

5.1 Expressions

Expressions are the linguistic means for ‘creating’ new values from ‘existing’ ones.
Since we have to start from something, there are two types of expression:

• Primitive expressions, and

• Compound expressions, which consist of

– an operator / function / procedure, and its

– arguments

– all of which can be expressions

Terminology

• The number of arguments that an operator needs is called its arity

This very ugly word comes from the use of the suffix ‘-ary’ in the formal names for the
varieties of this property, e.g. unary, binary etc.

• Where, in relation to the arguments, the operator (symbol) is placed is called its fixity

This is also an appalling ‘word’ ! It come form the use of the suffix ‘-fix’ in words such
as prefix, infix, etc.9

9Note that the word ‘suffix’ isn’t used, instead ‘postfix’ is!
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Examples

arity arguments examples
unary 1 *p

binary 2 a + 2

(+ a 2)

ternary 3 a==4 ? b=10 : exit()

4-ary 4 (f a b c d)

fixity position examples
prefix before its arguments (* x y)

sqrt x

infix between its arguments a == 4

postfix after its arguments b++

23!

“outfix” around its arguments | x-2 |

[ 1 2 3 ]

The use of the word “outfix” is not standard (there is no agreed standard term), but is a
logical extension of the others.
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5.2 Expression Evaluation

The syntax of expressions is interesting, but doesn’t vary much between languages.
However, we must be sure what any expression means.
⇒ we have to understand the evaluation rules for expressions in any language we are

concerned with.

Expression Evaluation

is the process of obtaining the value represented by the expression.

The answer to the question “what value does an expression represent?” requires answers
to two sub-questions:

a) When are expressions evaluated,

⇒ given all the syntactic components of an expression, in what order are they evaluated?

b) How are expressions evaluated

⇒ what are themeanings of the components, and how are these meanings (values) com-
posed?

H The answers to these questions are heavily language-dependent.
. . . but there are some common themes across most languages.
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Evaluation

a) When:

Evaluation normally occurs when “control” reaches the expression. To understand this
we must have some concept of this term ‘control’, and languages differ in their models
of control.

However for our purposes, and in general, we can say that expression evaluation is
demanded by “mentioning” the expression.

For example, for these (sub-)expressions:

...42 ...(2+3)*n ..."hello"

their values are produced when required by further expressions, without having to explic-
itly cause the valuation to take place. If that were the case, then we would have to be
supplied with operations for evaluating a primitive expression, and for applying an oper-
ator to argument values. So instead of writing 42 we would have to write evaluate(42),
or in place of (2+3)*n it would be necessary to do:

apply(*, apply(+, evaluate(2), evaluate(3)), evaluate(n))

Although this kind of thing would be annoying and obscure in most cases, some languages
do provide such operations. This can be a very powerful technique to use in the right
circumstances.

For example:
scheme: (define n 10)

(apply (eval *) (list (apply (eval +) ’(2 3)) (eval n)))

The second line has the same effect as (* (+ 2 3) n)

NB The use of the apostrophe (’) in this expression, which quotes the pair of arguments
to the + operator, is crucial. We shall see why later (§5.3)

b) How:

The Evaluation Rules for expressions in a language are determined by the language’s
underlying Computational Model

Language’s computational models differ in two ways:

Radically: which requires the programmer to acquire a new outlook when going form
one language to another. This involves a certain amount of intellectual work but, since
the models’ differences will be obvious, there is less danger of confusion.

Subtly: which can give rise to ‘dangerous’ situations where are programmer assumes a
particular aspect of the model, from past experience with other languages, say, and
doesn’t realise that the subtle difference is causing an error.

You must understand a language’s computational model!

Examples of some (simple) computational models will be seen later.
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5.3 Expression Abstraction

Abstraction

consists of factoring out the fixed and variable parts of something.

At the most basic level, that is, when there are no variable parts abstracting something is
merely naming it.
⇒ for fixed expressions, abstracting an expression ≡ naming an expression
We’ve seen that naming something creates a binding. Consequently, for expressions we’re

looking at this situation:

name expression

an expression value, not the value of the expression!

Therefore, in order to be able to abstract fixed expressions, a language must provide means
for:

a) making expression values

b) binding them to names

c) evaluating expression values that are bound to names.
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H No language10 has a way of creating “pure” expression values
⇒

Expression values are not expressible!

⇒ There are no ways to create expression values directly.
However, the nearest to having language to having this facility is scheme:

Example

(list ’+ ’x ’2) →’(+ x 2)

’(+ 1 2) →’(+ 1 2)

(eval ’(+ 1 2)) →3
(eval ’(+ x 2)) →
(define x 10) →
(eval ’(+ x 2)) →12

→
(eval ’(eval (+ 1 2)))→

This works because in scheme (LISP) all compound expressions are of the form:

( op arg1 arg2 arg3 ...)

where op, arg1, arg2, arg3,are expressions,

and op evaluates to a procedure value

⇒ a compound expression is a list of values

H In scheme, lists are primitive values

⇒ compound expressions and lists are the “same thing”. These are called S-expressions.

So in LISP-like languages, the three requirements for having abstraction of fixed expres-
sions are met as follows:

a) make expression value ’(+ 2 3)

b) bind to name (define exp ’(* 2 x))

c) evaluate named expression (eval exp)

10That I know of!
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NB Some languages have ‘evaluators’ that take strings and evaluate them as if they were
fragments of program.

Example

Python is such a language:
eval( ’1+2’ ) →3
eval( eval( ’1+2’) ) →
eval( ’eval( "1+2")’ )→3

However, this is not the same as abstracting expressions as an expression-value is not a
string-value.
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5.4 Procedures

Procedures11 are values that represent expressions in which some sub-expressions are fixed,
while others are variable.

Following the normal principles of abstraction, the variable parts are given names, which
represent values which will be determined when that name is evaluated.12

In a procedural abstraction the variable parts are called the (formal) parameters .
The procedure’s expression — the fixed and variable parts together — is called the (pro-

cedural) body .
⇒ There must exist syntactic (linguistic) means for specifying the parameters and the

body.
When it is needed to evaluate the body of the procedure — and there may be several

ways in which this could be done depending on the computational model — requires that the
parameters be bound to values.

The values bound to the parameters when a procedure’s body is evaluated are called the
arguments.

11Procedures are also known as: sub-programs, subroutines, functions, function subprograms, methods . . .
12Recall that the evaluation rule for a name is that it is evaluated to the value to which it is bound.
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Examples

Java / C: int f( int x ) { return 2*x; }; — Definition
f( 23 ); — Evaluation

• binds f to a procedure value

• the procedure takes one argument

• the argument will be dynamically bound to the parameter x when
f is invoked

scheme: (method 1) (define (f x) (* 2 x)) — Definition
(f 23); — Evaluation

• Same description as Java

Haskell: (method 1): let f x = 2*x — Definition
f 23 — Evaluation

• Same description as Java

let h x y = x * y — Definition
h 3 4 — Evaluation
h 2 4 — (re-)Evaluation

• binds h to a procedure value

• the procedure takes two arguments

• the argument will be dynamically bound to the parameters x and y
when h is invoked

• the parameters are re-bound to the arguments in the second evalu-
ation
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5.5 Procedures as Values

In section 5.4 is was said that “ . . . procedures are values . . . ”, and that the procedure definitions
in the above examples “bind the [procedure name] to the procedure value.

That is, the definitions above have this effect:

name procedural value

This should immediately make you ask, “What class of value (§ 4.2) is a procedure?”
Earlier (§ 4.2) we saw that procedures / functions /methods varied according to the lan-

guage:
Denotable? Expressible? Storable?

Java / C ! 5 5

scheme / Haskell ! ! !

So . . .
In some languages (scheme, Haskell . . . ) procedure values are first-class
⇒ they are expressible values
⇒ can be results of expressions Therefore, in languages in which procedures / functions

are first-class, we must have syntactic means for creating procedural values.
That is, we need a primitive expression which evaluates to a procedural value. That

primitive is called a lambda expression.

Lambda Expressions

A lambda expression

is the fundamental mathematical way of creating a procedure (function).

It is rather unfortunate that it has this strange name, as this tends to frighten people off
a simple concept. However, it comes from the branch of mathematics called the lambda
calculus — another off-putting term13 — which studies the nature of functions and the
abstraction of expressions, and so we use it!

In fact it’s quite useful to know that, in the Lambda Calculus, the standard notation for a
(lambda) function is of the form:

λ parameter-names . function-body

In programming languages the syntax, of course, varies with the language:

13It has nothing to do with differentiation and integration!
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5.6 Lambda Expressions

Lambda Expression syntax

scheme: (lambda ( parameters ) body)

Haskell: \ parameters -> body

python: lambda parameters : body

javascript: function( parameters ) { body }

H Each of these a primitive expression that evaluates to a procedure.

Therefore, we can bind names to procedures directly in these languages, using the same
binding mechanism(s) that bind names to any values.

Java 8: ( parameters ) -> body
C++11: [](parameters) { body }

Not clear if these are first-class function values.
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Lambda binding Examples

scheme (method 2) (define g (lambda (x y) (* x y)))

(g 2 20)

Haskell (method 2): let h = \ x y -> x*y

h 2 20

⇒ The examples given in the table on page 50 can be seen as syntactic alternatives to the
explicit binding of a name to a procedure given by a lambda expression.

For instance:

(define (g x y) (* x y))

has exactly the same effect as the scheme example above, and the Haskell (method 2) above
is exactly equivalent to the Haskell (method 1) on page 50

The crucial point about first-class procedural values is that they can be used in the same
ways as other values, for example they can be:

• stored in parts of data structures,

• passed as arguments to procedures,

• returned as the results of procedures.
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5.7 Procedure Evaluation

If a language provides procedures (expression abstractions), it is necessary to know how they
can be evaluated.

The terms used for demanding the evaluation of a procedure vary according to the language
in question, but the most common are:

a procedure


call
application
invocation


We must also distinguish between the evaluation of primitive, or ‘built-in’ procedures, and

compound or user-defined procedures:

Primitive Procedures are those which are supplied by the language. The only way in
which a programmer knows how these are to be evaluated is to read the documentation
of the language. These evaluation rules can be different from other procedures, compound
or primitive, in the language, or between languages. For instance, Boolean ‘OR’ primitive
procedure14 may evaluate both arguments, or the first argument and then the second only
if the first evaluates to ‘false’, or the other way round!

Compound Procedures are those defined by the programmer15 using any of the methods
allowed by the language (including ‘anonymous’ procedures which are the result of lambda
expressions).

To understand how these are evaluated requires that the user understands the Computa-
tional Model of the language.

There are several distinct computational models, and you will see these in other modules
as you deal with different languages. However, one of the most straight-forward is:

The Substitution Model

To evaluate a procedure call:

• replace each parameter occurrence in the body with its corresponding argument

• evaluate the body with these substitutions.

See SICP [1] §1.1.5 for more details

This is only OK where we don’t have any ‘side-effecting’ operations in the language,
such as assignment.

14Note that, although this is generally called an ‘operator’ and is usually infix, it is still a (primitive)
procedure.

15. . . or the writer of a library that the programmer is using.
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⇒ It is a model

⇒ Some ‘pure’ languages, such as Haskell, conform to this model

It is a model, and not an implementation specification.

A more general model, the Environment Model [1], is needed to allow for assignment.

A short example illustrates this simple model . . .

This is not an adequate model for all languages

55



POPL Expressions and Procedures 45

Example

scheme: (define (s x y) (mean (* x x) (* y y)))

(define (mean a b) (/ (+ a b) 2))

then:
(s )

→ (mean (* ) (* ))

→ (/ (+ (* ) (* )) 2)

→ no more compounds ⇒ evaluate the primitives

Now that we have an idea how the body abstraction is turned into an evaluatable expression
by a procedure call, we need to ask:

? What exactly is substituted for the parameters in the body

⇒ We must now focus on the parameters, the arguments, and how one ‘becomes the other’.
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5.8 Nullary Procedures

Before considering parameters in more detail, we need to consider the special case of

procedures with no parameters

.

Nullary Procedures are those whose arity = 0

⇒ have no parameters

⇒ take no arguments

• A general way of naming (abstracting) expressions

⇒ delay the evaluation of an expression,

⇒ evaluate it later by invoking it (with no arguments)

• also known as Thunks

Example (scheme)

(define 2xThing (* 2 thing))

evaluates (* 2 thing) now

(define (2xThing) (* 2 thing))

evaluates (* 2 thing) when the ‘thunk’ 2xThing is invoked by (2xThing)
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5.9 Parameters

The variable part of the abstraction that is represented by a procedure is factored out as its
parameters.
⇒ To evaluate a procedure the parameters must be bound to the arguments supplied in

the procedure invocation.
This process of binding arguments to parameters is known by several terms:

Unfortunately, the most common term — parameter passing — is the least precise, since
it is arguments that are passed, not parameters! However, we shall use the common term
due to its history!

parameter
argument

}
—

{
passing
transmission

Just to confuse matters further, one often finds — in older texts — alternative terms
for parameters and arguments:

Alternative Terminology

• ‘parameters’ ≡ ‘formal parameters’

• ‘arguments’ ≡ ‘actual parameters’
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5.10 Argument Transmission

As mentioned above, this is also known (imprecisely) as:

• Parameter Passing, or

• Parameter Transmission

Parameters are bound to the corresponding arguments when a procedure call is evaluated,
then the body is evaluated. But this, correct, statement leaves two vital questions unanswered:

a) What ‘property’ of the argument is bound?

b) When is the bound property evaluated?

Remembering that arguments are expressions, and parameters are names . . .
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5.11 Parameter Binding

There are essentially three choices for the bound property :

a) Bind the value if the argument.

This gives the argument transmission method called call-by-value 16

b) Bind the address of the argument

This is called call-by-reference

c) Bind the actual expression that is given by that argument.

This is called lazy evaluation , of which there are two varieties:

⇒ call-by-name

⇒ call-by-need

Note It is the language designer who decides which parameter-passing mechanisms are avail-
able, not the programmer.

⇒ If the language doesn’t have the mechanism syntactically, then it would have to be
explicitly programmed by the user.

16Sebesta [3] calls this pass-by-value, which is a much better term. However, ‘call-by-value’ is common
usage, so we will stick to this!
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a) Call-by-Value

The parameter is bound to a (fresh) variable.17 Then the argument expression is evaluated,
and the resulting value is copied into the newly bound variable.

At least, this is what happens conceptually . . . the actual implementation may be different!

⇒ Access to the parameter within the procedure body can have no effect on the argument.
For instance, assigning to the parameter within the body will do nothing to the argument,
and so will be ‘invisible’ to anything ‘outside’ the procedure body. See §6 later for a full
treatment of these ideas.

The situation can be illustrated thus:

caller procedure
foo( x, 23, 2*x ) foo( p, q, r )

42

23

84

p

q

r

x 42

23

2*x 84

42

23

84

17That is a location, large enough to hold the argument’s value, that is not bound to any other name in the
programme at that point.
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b) Call-by-Reference

When arguments are passed by reference, it is an argument value’s location that is bound
to a parameter name.

This implies that the argument expression is inspected first to see if it’s value already has
a location — for instance, if it is name bound to a variable — or whether it needs further
evaluation before the value ‘has’ and address, as would be the case for an argument which
is a compound expression. In the latter case the expression would be evaluated and placed
in a variable, and the variable’s address would then be bound to the parameter name.

A simple pictorial example is:

caller procedure
bar( x, y ) bar( p, q )

x · · ·

y · · ·

p

q

H The crucial difference between call-by-value, and call-by-reference is that in the lat-
ter case, any operation within the procedure body that modifies the parameter’s value also
modifies that of the argument. Thus, any references to the argument’s value ‘outside’ the
procedure body will ‘see’ the effect of the internal operation.
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5.12 Lazy Evaluation

is a general term for two types of argument passing mechanism:

• Call-by-name, and

• Call-by-need

The principle behind both of these is that an expression is evaluated only when it can be
proved that its value will be required.

Some languages — principally the modern ‘functional’ languages — use lazy evaluation
implicitly, and so the programmer doesn’t have to do anything special to make this hap-
pen.18 However, providing a language has first-class procedure values, then the effects of lazy
evaluation can be achieved by using thunks explicitly.

Lazy evaluation can be implemented in many ways depending on the language, but it is
helpful to ‘imagine’ how a language could be lazy’, as follows:

Conceptually:

• argument expression is ‘wrapped’ in a thunk

• parameter is bound to the thunk

⇒ parameter evaluation in procedure body is a thunk invocation.

For example, the situation we saw in the Scheme practical with the definition of the
(either a b) procedure, is a perfect example of using explicit thunking to simulate lazy
evaluation.

With this model in your mind you can see that the evaluation of the argument expression
will be delayed until the thunk is invoked within the body of the procedure.

Multiple parameter occurrences

If the argument evaluation is delayed until it’s required in the procedure body, what
happens if its value is required in several places?

This question boils down to asking whether a ‘lazily evaluated’ argument is evaluated
more than once?

Answer: it depends . . .

• In languages without side-effecting operations — primarily the modern functional pro-
gramming languages such as Haskell — it would be evaluated once when the value is
first needed, and then the value is ‘shared ’ with other instances of the parameter to
which the argument is bound

18Although, of course, the programmer must have this computational model in mind all the time when
writing their programmes!
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• For languages with side-effects the argument must, in general, be re-evaluated every
time the bound parameter’s value is required. In essence, this is because any computa-
tions between places where the parameter’s value is needed might have had side-effects
which could change the value . . . for instance, a variable in the ‘thunked’ expression
might have been assigned to.
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Lazy Evaluation is (normally) automated, so that there is no need to explicitly ‘thunk’
argument expressions, nor to explicitly invoke the thunk in a procedure body.

In essence, this means that the placing of argument expressions in a procedure call’s argu-
ment list ‘looks like’ it would if there were applicative-order (non-lazy) evaluation.

call-by-name = lazy evaluation without sharing
call-by-need = lazy evaluation with sharing

call-by-name can also be though of as a “textual” replacement of the parameters in the
procedure body by the actual argument expression.

However, in this case, the names in the argument expression must be carefully checked to
see if any of them ‘clashes’ with names in the procedure body expression. If so, then they
must be consistently changed to overcome this.19

To understand this more fully, see SICP [1] on the Substitution Model.

19In the mathematical theory of the Lambda Calculus, this process of alteration is called α-conversion.
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5.13 Argument Passing Comparisons

call-by- Popularity Clarity Safety Cost

value high easy good expensive

reference
medium in modern lan-
guages

easy bad cheap

need
common in ‘pure’ languages,

easy excellent
cheap in pure lan-
guages

uncommon in other lan-
guages

name very unusual awkward bad cheap
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5.14 Argument Transmission Examples

scheme:

call-by value (mostly)

• exceptions are the ‘special forms’: if, define, set! ...

call-by-name (lazy evaluation)

• using the delay and force special forms

C: call-by-value

• call-by-reference is simulated by passing pointers (by value)

C++: call-by-value

call-by-reference

Haskell: lazy evaluation (call-by-need)

Java: call-by-value
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6 Scope and Environments

6.1 Scope

The scope of a binding

is the set of expressions where it holds.

• expressions where a name is defined by that binding,

• expressions where that binding is visible.

An environment

is a collection of bindings

Created by

program blocks:

• begin ... end, {...}, (let (...) ...) etc.,

• explicit bindings within the blocks:

int x; (define x 10); (let ( (x 20) ) ...) etc.

procedure definitions

• explicit bindings within the body (block), and

• procedure parameters
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6.2 Environments

H Program blocks, and procedures, can be nested:

⇒ Bindings can change between blocks

⇒ Environments need to reflect this feature

Conceptually: use a stack of environments.

⇒ the environment containing the ‘current’ binding for a name is the topmost in which the
binding appears.

Scoping Mechanisms

There are two ways to determine the scope of a binding:

a) Static Scoping

Static ⇒ can be done before runtime

b) Dynamic Scoping

Dynamic ⇒ must be done at runtime

• Distinguished by how the environment stack is formed . . .
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6.3 Static Scoping

The binding is given by textually closest definition to the use of the name.

⇒ environment is pushed when a block / procedure definition occurs in the program text

⇒ can be done at translation time (compile-time)
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Examples (blocks)

Java: { int x; ← scope of (binding for) x → }

NestingJava: { int x; ← scope of x ...

{ float y; ← scope of x and y → }

...scope of x continued→ }

C: { int x; ← scope of x ...

re-binding{ float x; ← scope of new x → }

...scope of original x continued→ }

⇒ An inner scope hides enclosing bindings for new definitions.
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Examples (procedures)

Java: void foo( float z ) { int x; ← scope of x and z → }

scheme: (define (f p))

← scope of p ...

(let ( (q 10) )

← scope of p and q ...

(let ( (x p) (q 99) )

← scope of x, new q, and p →
)

. . . scope of p and original q continued→
)

. . . scope of p continued

)

scheme: (lambda (x) (let ((y 10)) ) ← scope of x and y → )
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6.4 Dynamic Scoping

The binding is given by definition most recent in time to the use of the name.

⇒ environment is pushed when a block / procedure is entered at runtime

⇒ must be done at runtime
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6.5 Static v. Dynamic Scope

Example

(define (outer)

(let ( (X 10) )

(define (inner1)

(let ( (X 20) )

; body of inner1

(inner2)

)

)

(define (inner2)

; body of inner2

X

)

; body of outer

(inner1)

)

)

Call Sequence

• outer calls inner1

– inner1 calls inner2

∗ inner2 returns X

Static Scoping

⇒ outer’s call to inner1 returns 10

⇒ inner2’s X is outer’s X

Dynamic Scoping

⇒ outer’s call to inner1 returns 20

⇒ inner2’s X is inner1’s X
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Example

perl: $x = "f’s value of x";

sub f { return "f is returning " . $x; }

sub g_static { my $x = "g’s value of x";

return f(); }

sub g_dynamic { local $x = "g’s value of x";

return f(); }

g_static returns: "f is returning f’s value of x"

g_dynamic returns: "f is returning g’s value of x"
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6.6 Closures

A Closure

is a procedure definition plus the environment active when it was created.

Example

(define (mul x) (lambda (y) (* x y)))

(define double (mul 2))

→ a procedure which multiplies its argument by 2

⇒ x in mul is bound to 2

(define triple (mul 3))

→ a procedure which multiplies its argument by 3

⇒ x in mul is bound to 3
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Control Flow

Control Flow

Turing-complete language
⇒ conditional control of evaluation sequence

Useful Turing-complete language
⇒ repetition constructs.

Both of these are ways of modifying the flow of control
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7 Choice and Repetition

7.1 Choice

Choice mechanisms

allow redirecting of the flow of control:

⇒ Do this, or do that, [. . . or do that, or that, or . . . ]

⇒ Evaluate this, or that, [. . . or that, or . . . ]

• Decision is based on the current state.

– state ⇒ set of values in the running process

. . . which may be denotable or expressible

⇒ Need linguistic means for checking the state

⇒ predicates (expressions returning truth values) on the state

Predicates can be:

• primitive, or

• compound
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Primitive Predicate examples

Equality = eq? == ...

Inequality != < ...

Type membership instanceof symbol? ...

Data structure membership ∈ in subset ...

Composition operators

Unary ! ¬
Binary & | && || .and. .or. ...
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Multi-Way Choice

can always be simulated by nested two-way choices

. . . but special syntax aids readability and writability:

Statement-oriented:
Java / C: switch (expression) {

case value: statement;
case value: statement;

...

default: statement;
}

Expression-oriented:
scheme: (cond ( predicate expression )

( predicate expression )
...

( else expression )

)
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Other choice mechanisms

are given in some languages, but all reduce to a two-way conditional:

Examples

Exceptions:
Java: try{. . . A . . .} catch (Exception) {. . . B . . .}
≈ if Exception-occurs-in { . . . A . . . } then {. . . B . . .}

Pattern matching:
Haskell: data Expr = Val Int | Sum Expr Expr | ...

eval (Val n) = n

eval (Sum e1 e2) = (eval e1) + (eval e2)

⇒ similar to a switch / cond
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Evaluation of conditionals

1. evaluate predicate, then

2. evaluate selected branch

⇒ scheme: (if pred expr1 expr2) cannot be evaluated like other expressions . . .

Normal rule: evaluate all the components and then apply the first to the rest.

Consider:

(define (doit n) (if (= n 1) 0 extremely-long-computation) )

(doit 1)

or worse:

(define (forever) (forever) ) (if #t 1 (forever) )
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7.2 Repetition

Repetition mechanisms

allow sequences of expressions to be evaluated repeatedly, until some condition holds.

⇒ must involve some variation in each repetition otherwise . . .

• pointless,

• will either never repeat, or will never stop.

Condition is a predicate on computational state

⇒ use the same expressions as choice mechanisms
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Terminology

An Iterative Process

exists when the memory needed to control the repetition does not increase with each cycle.

An Iterative Definition

generates an iterative process when evaluated.

A Recursive Process

exists when the control memory required increases with each cycle.

A Recursive Definition

may generate a recursive or an iterative process when evaluated.

Depends on:

• form of the definition, and

• language implementation

84



POPL Choice and Repetition 74

Iteration Constructs

Bounded: for

Unbounded: while do...while repeat...until etc.

Combined: for (C, Java)

Issues

control variable scope:

• is the loop counter local to the loop?

• can it be accessed after the loop has exited?

exceptional exit: break (C, Java)

exceptional entry: is jumping into the body of a loop allowed?
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7.3 Recursion

A Recursive (inductive) Definition

is when self-reference occurs within the definition.

This is well-defined iff:

• one or more base-cases exist,

• . . . which will always be reached.

A base-case

is a non self-referential expression which provides the returned value.

Examples
C: int fact(int n) {

return n==0 ? 1 : n * fact(n-1);

}

scheme: (define (! n)

(if (= n 0) 1

(* n (! (- n 1)))

)

)
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7.4 Tail Recursion

occurs if the result of the recursive call is the result of the procedure
. . . with nothing else ‘in between’
Executing a tail call ⇒ all control memory can be re-used

1. overwrite local variables and parameters, and

2. jump to the start of the procedure’s code.

a tail call ≡ a goto (with parameters|)
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Example:

C: int factR( int n ) {

return n==0 ? 1 : n * factR( n-1 ); }
is not tail re-

cursive, but:

C: int factI( int n, int r ) {

return n==0 ? r : factI( n-1, r*n ); }
is tail recur-

sive.

. . . But does it give an iterative process?
⇒ yes — with a good compiler . . .

88



POPL Choice and Repetition 79

gcc factI.cc

factI:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %edx

movl 12(%ebp), %ecx

movl %ecx, %eax

testl %edx, %edx

je .L1

subl $8, %esp

movl %edx, %eax

imull %ecx, %eax

pushl %eax

decl %edx

pushl %edx

call factI

.L1: movl %ebp, %esp

popl %ebp

ret

gcc -O2 factI.cc

factI:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %edx

movl 12(%ebp), %eax

.L2: testl %edx, %edx

je .L1

imull %edx, %eax

decl %edx

jmp .L2

.L1:

popl %ebp

ret
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is not only a space-saver . . .

Example:

scheme: (define (fib n) ; doubly recursive version
(cond ( (= n 0) 0 )

( (= n 1) 1 )

(else (+ (fib (- n 1)) (fib (- n 2))))

(define (fibI a b n) ; iterative version
(if (= n 0)

b

(fibI (+ a b) a (- n 1))))

Performance:

• recursive Fibonacci — time ∝ n2

• iterative Fibonacci — time ∝ n
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Data Types

Data Types

A programming language’s Data Types are characterised by the:

1. Primitive types

2. Type composition mechanisms

3. Type abstraction mechanisms

⇒ The same principle as expressions
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8 Data Types

8.1 Theory 1

A Type is

• a set of values, together with

• a collection of operations on those values

Types:

• name sets of values

• hide representations of values

• name operations on elements of the type

• hide representations of the operations

Types are abstractions of values
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Primitive Types

Boolean (truth values)

• bool, Boolean, boolean

Numerical

• int, Integer, float, real, double, long, complex . . .

Characters

• char

Strings

• string, String, . . . often not primitive.

Enumerations

• enum {second, initial, tuesday, X}

Subranges

• Real 1.0 .. 2.0

. . . of ordinal types
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8.2 Theory 2

Composition Mechanisms

Types are sets ⇒ composition mechanisms are set operations:

Three fundamental

{
composition operators
type constructors

}

Type terminology Set terminology
1. Product: A×B Cartesian Product: A×B

• A×B is the type containing pairs of values of type A and B

• operation is projection ⇒ extract the A value or B value

2. Sum: A + B Disjoint Union: A ]B

• A + B is the type containing values of type A or B

• operation is injection ⇒ test the type of the value

3. Function: A → B Exponentiation: BA

• A → B is the type containing functions from a value of type A to one of type B

• operation is application ⇒ return the B value identified by the A value.
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8.3 Type Composition

Product Types

Examples:
C: struct { int x; int y; }

ADA: record

x: Integer; y: Integer;

end record

Java: class { public int x; public int y; }

projections: .name . . . thing.x, thing.y

scheme: (cons x y) . . . a pair
projections: (car pair ), (cdr pair )

Haskell: ( x, y ) . . . a tuple
projections: fst tuple, snd tuple . . . or ‘pattern matching’

Products of more than 2 types are still products since:

A×B×C ' A×( B×C ) ' (A×B)×C
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Sum Types

are (almost) unions / variants etc.

Must carry the injection operations ⇒ type predicates (testers).

Examples:
Haskell: data t = A a | B x y | C c

injections: pattern matching on tags / discriminants A, B, C . . .

ADA: variant records . . . see POPL Part 2!

Java: simulated with sub-classing:
class T{};

class A extends T{}; class B extends T{}; . . .

injections: injection operation is instanceof

C: union { int x; double y; }

injections: None! ⇒ type system can’t check!

scheme: no (static) types ⇒ no sum types (unions)!

Sums of more than 2 types are still sums since:

A + B + C ' A + ( B + C ) ' (A + B) + C
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Function Types

are procedures / functions / methods / subprograms etc.

Not expressible in many languages such as:

• Java, ADA, C, scheme (no types!) . . .

e.g. C: int f (int x, int y) { . . . }

. . . creates an instance of int × int → int,

but it’s not possible to say:

(int × int → int) f;

Examples:

Haskell: (Int, Int) -> Int

ML: (Int * Int) -> Int
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8.4 Theory 3

Currying

A function of two arguments has type:

(A×B)→C

Isomorphic to — essentially the same as – a function of one argument that returns a
function of one argument:

A→(B→C)

This is called a curried form of the 2-argument version

Examples

scheme: (define (f a b) (+ a b))

; number × number → number
(define (f a) (lambda (b) (+ a b)))

; number → number → number

Haskell: f (x,y) = x+y :: (Int , Int) -> Int

f x y = x+y :: Int -> (Int -> Int)
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8.5 Type Abstraction

The fundamental abstraction mechanism is naming.

Not possible in all languages

Examples

Java: class C { . . . };

C: typedef int Length; typedef char* String;

typedef struct { int left; int right; } Sides;

Haskell: type Sides = (Int,Int)

type BinaryOp = Int -> Int -> Int

ADA: type Complex is record

real_part : Real;

imaginary_part : Real;

end record;
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8.6 Abstraction Mechanisms

Factor out the variable parts from the fixed parts . . .

Parametrisation (Generics)

Gives rise to type functions

⇒ take types and return a type

Examples:

Java: class Stack<T> { T stack[. . .]; . . .

T pop(){. . .};

void push(T x) {. . .};

}

Haskell: type BinaryOp a = a -> a -> a

data Tree a = EmptyTree

|(Tree a) (Node a) (Tree a)

100



POPL Data Types 91

8.7 Type Checking

is ensuring that argument types are compatible with parameter types
⇒ applies to all operations: primitives, user-defined procedures etc.

Terminology

Static typing:

all types are known, and can be checked, before run-time

Dynamic typing:

(some) types aren’t known until run-time

⇒ can get runtime type errors

Strongly typed:

all type errors are detectable

. . . whether statically or dynamically

. . . But what does compatible mean?
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Type Compatibility

Two types are compatible iff:

• they are the same type, or

• a value of one type can be translated into a unique value of the other

⇒ coercion

e.g. 645 (integer) can-be-coerced-to 645.0 (float)

Coercion can be:

• automatic

⇒ language’s coercion rules are applied at compile-time

e.g. sub-types are coerced to super-types when necessary

• user specified

• normally called type casting
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Type Casting

breaks type system safety

Example

Java: long l = 656666L; int i = (int) l;

⇒ type OK, statically and dynamically

long l = 6566660000L; int i = (int) l;

⇒ type OK, statically and dynamically
. . . but semantically wrong!

Integer caster(Object o) { return (Integer) o;}

caster( new Integer(42) );

⇒ type OK, statically and dynamically

caster( new String() );

⇒ type OK statically, but runtime error
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8.8 Type Equivalence

rules in a language say when two types are the same
Two approaches:

1. Name Equivalence

• Two entities have the same type if their types have the same name

⇒ Cheap to check

⇒ Too strict in some circumstances

Example

C: typedef struct {int x; int y;} Pair;

Pair p1, p2;

struct {int x; int y;} p3;

p1 = p2; //OK
p3 = p2; //type error
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2. Structure Equivalence

• Two types are the same if they have the same structure

⇒ More difficult to check (especially dynamically)

⇒ Too lax in some circumstances

Example

notJava: class Place {float x; float y;};

x,y coordinates (lat, long)
class Rectangle {float x; float y;};

width and height

Place earth; Rectangle field;

bool isSquare(Rectangle r) {

return r.x == r.y;

}

isSquare(field); //(structurally) type correct
isSquare(earth); //(structurally) type correct
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8.9 Type Inference

occurs in modern languages where types can be deduced
Types of primitive operators are known

⇒ type of an expression can (often) be inferred

⇒ not necessary to declare the type of every entity
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Example

Haskell: map f [] = []

map f (x:xs) = (f x) : (map f xs)

1. map is a function of two arguments. In Haskell this is curried:

map :: α→ δ → ε

2. δ and ε are ‘lists of something’ — either [], or a ‘cons’ (:)

map :: α→ List of β → List of γ

3. f is a function of one argument, returning an element of map’s result:

α = β → γ

4. Hence map has the type:

(β → γ)→ List of β → list of γ

⇒ map :: (a -> b) -> [a] -> [b] . . . the most general type

Deduced by the compiler
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Encapsulation

Encapsulation

Abstraction is the complexity control mechanism

• collect related ‘things’

• name the collection

• extract (abstract) their differences

• ignore their commonalities

An Encapsulation is an abstraction
. . . but normally used to refer to a collection of abstractions
i.e an abstraction of abstractions
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8.10 Abstract Data Types

are compound Data Types . . . i.e. not primitive

• a set of values

⇒ a type

• a collection of operations on those values

⇒ function / procedure definitions

⇒ implementation hidden, andsignature (interface) exposed

Examples

Java: classes can be used as ADTs . . . but are more
ADA: packages can be used as ADTs . . . but are more
scheme: procedures and environments can simulate ADTs
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8.11 Modules

A Module or package

• is a collection of ADTs, plus

• a mechanism for controlling the visibility of names

⇒ an Encapsulation
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Examples

Java: package stuff

public names are
visible

. . . class definitions . . .
or:

interface I { specification }

class C implements I { implementation }

ADA: package P is specification end P;

package body P is implementation end P;

Haskell: Module M ( exported names )where exported names are
visible. . . type and function definitions . . .
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8.12 Abstraction

Why Abstract?

1. Abstraction controls complexity

. . . but abstractions become complex

⇒ Abstract the abstractions

⇒ raise the abstraction level

2. Separate compilation

• Dependencies between program components (implied or explicit) determine what needs
to be recompiled when some part of a system changes.

• Separating interface and implementation:

– changing implementation doesn’t require re-compiling all uses of the abstraction.
. . . will require re-linking though

– changing specification does require re-compilation.

Why not?

. . .
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9 Health Warning

9.1 Health Warning

The Pathology of Abstraction

Abstraction ⇒ ignoring (some details)

⇒ simplification

⇒ generalisation

. . . but can go too far!

“Simplify as far as possible . . . but no further!”
Einstein
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