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Segment 1

Scheme

This first segment will introduce you to the scheme language, which will be used as the
‘defining’ or ‘meta’ language for the ‘defined’ or ‘object’ languages (see the lectures!) that
you will be creating and using to investigate the various principles of programming langauges
in the rest of POPL Part 1.

The practical exercises are as much a part of POPL as the lectures so you must expect
to invest a significant learning effort in them. They should take a lot of your time! It is
very unlikely that you will you get through all of the exercises during the time-tabled prac-
tical sessions since you’ll be spending quite a lot of time reading, questioning, backtracking,
debugging, re-designing etc. So expect to do most of the meaty exercises in your own time.

This segment, as in all the following ones, is organised as a sequence of exercises: some are
paper-and-pencil, others involve programming. In all the segments, exercises with headings in
solid box are essential — you should complete all of these. Optional exercises are indicated

by a dashed box — try to do these, but they are not essential.

Working Method

I very strongly recommend the following organisation of your work in the POPL practicals:

1. Create new directories for each segment, possibly naming them by the segment number.

2. Within a segment’s directory, create a separate directory for each major ‘unit’ (section,
set of exercises etc.).

3. Create all the files for a particular unit within its directory, even if this means making
duplicate copies of existing files. You will sometimes be given ‘boiler-plate’ code,1 or
test data etc. You should copy that into the exercise’s directory before starting.

If you want to follow some other organisation, it’s your choice, but you may get tangled
up with the wrong versions of files (from earlier exercises, for instance). As I said, I very
strongly recommend this way of doing things!

0. Running scheme

For the practicals in POPL Part 1 you will be using the DrRacket scheme IDE running under
Linux or Windows: your choice, but I shall assume the Linux implementation in the following.

1Program text that is required, but doesn’t add to the learning purpose of the exercise.
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Segment 1 Scheme

You should work in some convenient directory in your own file space — I shall refer to it as
your ‘working directory’.

Exercise 0 Depending on whether you’re using Linux or Windows, do the following:

Linux Windows

• Open a terminal window and cd to
your working directory.

• Issue the drracket& command to
start DrRacket in the background —
that’s what the & is for you’ll recall!
After that you can ignore the termi-
nal window until DrRacket exits.

• Start DrRacket from the Start but-
ton

The GUI has two windows: the lower (‘interactions’) window evaluates any scheme expres-
sion that you type in. The upper (‘definitions’) window is for typing and editing definitions.
All the expressions and definitions typed into the definitions window are executed when the
Run button in the menu bar is clicked. When Run is clicked, the interactions window is reset
ready for you to evaluate further expressions.

NB. The first time you use DrRacket you will need to tell it which dialect of scheme
(‘language’) to use. Since, from Segment 2, we will be following the exercises in Essentials
of Programming Languages, use the eopl dialect — this will ensure that all the extra tools
used in EOPL are available. To set this as the default, hit ctrl-L and select the top radio
button labelled ‘Use the language declared in the source.’, and then close the dialogue. This
will cause the line:

#lang racket

to appear in the top window (if it is not already there!). Then press the Run button.2

I also recommend selecting the Open files in separate tabs (not separate windows) option in
the Edit|Preferences. . . dialogue under the General tab.

You should experiment with the DrRacket system to familiarise yourself with its use,
before moving on to the next section. For example, try the following:

• In the interactions window type:

> 123456

> (* 234 987654321)

> (define three 3)

> three

2You will be using the racket scheme dialect in Segment 1, but you will change to using the eopl dialect
from Segment 2 onwards.

8



Segment 1 Scheme 1.1. LEARNING SCHEME

• In the definitions window there is no > prompt, as the expressions and definitions typed
here are evaluated when Run is clicked. Try typing all the above expressions (without
the >) into the definitions window and then Run it.

Note that all the separate expressions are evaluated in sequence but their results are
not seen3 in the interactions window. In practice it is unusual to have any expression
other than a definition in the definitions window.

Finally, the contents of the definitions window can be saved to file using the File|Save Def-
initions As. . . menu item. A previously saved file can be then reloaded into a new tab with
Ctrl-O.

�

1.1 Learning scheme

There are two fundamental resources for learning scheme:

1. The Revised5 Report on Scheme (RnRS). Available on-line at:

pdf: www.schemers.org/Documents/Standards/R5RS/r5rs.pdf

html: www.schemers.org/Documents/Standards/R5RS/HTML/

2. SICP [?]4— available free on-line at:

http://mitpress.mit.edu/sicp/full-text/book/book.html

It is possible to learn enough scheme to start on the exercises by reading through the early
parts of RnRS, trying out some examples of your own devising. Back this up by questioning us
and looking up information in SICP . In fact, I recommend this approach as ‘bootstrapping’
yourself into a new language is a very useful skill to acquire!

However, there are some on-line tutorials available which take a more sequentially struc-
tured approach. The disadvantage is that they might assume you’re using particular imple-
mentations, system set-ups etc. which don’t apply and so can be confusing. By all means try
these though if you prefer. A couple of reasonable tutorials are at:

• www.cs.hut.fi/Studies/T-93.210/schemetutorial/schemetutorial.html

• www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

1.1.1 Reading

From segment 2 onwards, you will be following the exercises in Essentials of Programming
Languages extensively. There will also be suggested readings from that book. For this segment
you should read [Ch. 1] which will help your understanding of scheme, provide a few extra

3This behaviour varies according to the language dialect chosen: eopl behaves as stated, whereas racket

(the default) shows the values of every expression in the definitions window!
4Note on citations: those with authors listed refer to the Bibliography (page ??). Those without authors,

refer to Essentials of Programming Languages [?].
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1.2. SENTENCING Segment 1 Scheme

exercises for you to try, and introduce the techniques of ‘data-oriented design’ which is followed
in the subsequent segments.

Exercise 1 You should be prepared to spend most of the first timetabled hour of this
segment on this exercise! However, by all means move on to the programming exercises when
you feel you can.

• Look at the learning resources — RnRS, SICP , and the tutorials mentioned above —
and decide which suits you best.

• Start learning scheme.

�

Background to the Programming Exercises

The following two sections are slightly modified versions5 of the second and third practicals
that were given to our first-year students for about a decade from the mid-90s.6 They are
therefore only moderately difficult, as the students hadn’t had as much programming experi-
ence as our current Stage 2. So they shouldn’t be too intellectually challenging for you with
your greater experience and knowledge.

However, those students had had about 10 lectures which used scheme,7 whereas you have
had about an hour’s experience of scheme (unless you’ve used it before) as the first part of
this segment. So you will need to make use of your greater experience in programming in
general to complete the exercises.

1.2 Sentencing

This section is concerned with helping your understanding of:

• lists,

• procedure definitions, and

• recursion.

as well as giving practice in reading programs written by others.8

You will build procedures which operate on lists — these lists will contain words which
you will use to generate English sentences. You will not have to write the whole program
(collection of procedures) to generate these sentences, but you will have to understand the
whole program since you’ll need to define some of the procedures which are (deliberately)
missing.

5Because of the heritage of the exercise sections, it’s possible that there are still some oddities in the text
due to inaccurate editing. I’d be grateful for you to let me know when you find them, and I’ll correct them
for next time . . . none were pointed out to me last year!

6Which is turn were slightly modified versions of material written by MIT ( c© Massachusetts Institute of
Technology, 1988).

7And the course text was Abelson and Sussman!
8This is a vitally important skill.
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Segment 1 Scheme 1.2. SENTENCING

1.2.1 Generating Sentences

Background

We want a program that will generate English sentences. In order to approach this vastly
complex topic, we will restrict ourselves to considering only very simple sentences — for our
purposes a sentence will consist of the word “the” followed by a noun phrase followed by a
verb phrase.

A noun phrase will consist of either a noun, or an adjective followed by a noun phrase.9 A
verb phrase is either a verb, or a verb followed by an adverb.10 Make sure that you understand
these two definitions — the program will be designed by following their structure.

We will represent words as Scheme symbols, and the words available to the system will be
stored in lists, as follows:

(define noun-list (list ’dog ’cat ’student ’professor ’book ’computer))

(define verb-list (list ’ran ’ate ’slept ’drank ’exploded ’decomposed))

(define adjective-list (list ’red ’slow ’dead ’pungent ’over-paid ’drunk))

(define adverb-list (list ’quickly ’slowly ’wickedly ’majestically))

Phrases will be represented as lists of words (that is, lists of symbols). For example (ate)

and (ate quickly) are verb phrases; (professor) and (dead pungent student) are noun
phrases.11

Exercises

You need the scheme code for the four word lists defined above, so start by typing those into
your definitions window.12 Then click Run to ‘install’ them. If there are any error messages
at this point go back and correct your definitions. If not, test them by evaluating them —
typing the defined names into the interaction window. For example, the value of noun-list
is:

(dog cat student professor book computer)

Don’t forget to save your definitions window periodically!

Note. You will need to fill in ‘gaps’ in the some of the following definitions. These are all
marked by ???.

The top-level procedure is the one that generates sentences. It takes no arguments, since
it should produce a new sentence each time that it is evaluated. As stated in subsection 1.2.1,
(sentence) should generate a list consisting of the word the followed by a noun phrase
followed by a verb phrase, so we assume that two procedures noun-phrase and verb-phrase

exist, and that they produce lists corresponding to the two phrase types. This means that
we will need to join several lists together to form a single list. We shall use append for this:

9Notice that this is a recursive definition — noun phrase is defined in terms of itself.
10On the other hand, this is not recursive.
11The latter is a noun phrase since it consists of an adjective dead, followed by a noun phrase (an adjective

pungent, followed by a noun phrase (a noun student)).
12Copy and paste is OK, too!
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1.2. SENTENCING Segment 1 Scheme

(define (sentence)

(append (append ??? (noun-phrase)) (verb-phrase))

)

Exercise 2 Work out what should replace the ??? in this definition, and edit it into your
program file. You can’t test this yet, as we need to define the other procedures.

�

Since the words which will make up the various phrases are to be picked at random from
the word lists, we need a procedure to do just this. This involves using the built-in procedure
(random n) which evaluates to a random integer between 0 and n−1. We will also need to

use the built-in procedure (list-ref lst n) which evaluates to the nth element (counting
from 0) of the list lst.

Exercise 3 Complete the following, type it in to your program, and test it (work out how
to test it yourself):

(define (pick-random lst)

(list-ref lst (random ??? ))

)

�

Exercise 4 Write a procedure a-noun (that takes no parameters) that selects a noun from
noun-list at random. Similarly, write procedures a-verb, an-adverb, and an-adjective.

Test all of these procedures.

�

In order to generate phrases, we will write a procedure called either which takes as
arguments two procedures (which take no parameters) and evaluates one or the other of them.
The definition that we shall use is:

(define (either a b)

(if (= (random 2) 0) (a) (b) )

)

Check that you understand this procedure,13 and include it in your program.

Now you have all the tools you need to construct the procedures noun-phrase and
verb-phrase Using either, the definition of these two procedures is a matter of translating
the definitions of noun phrase and verb phrase given in subsection 1.2.1 into scheme notation.

Exercise 5 Design and test noun-phrase and verb-phrase as defined above.

�

For reference, the Appendix (page 51) lists all the code that you need to write (without
the ‘gaps’ being filled, of course!).

13You probably don’t! There’s a gotcha here!
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Segment 1 Scheme 1.2. SENTENCING

1.2.2 Going Further

These suggestions can be done in any order. However, it would be worth thinking about them
all even if you don’t have time to implement them.

Why is (either ...) so weird?

It would seem at first sight that either has been made overly complicated by using procedural-
valued parameters. A simpler (but incorrect) definition might be:

(define (either a b)

(if (= (random 2) 0) a b)

)

along with appropriate modifications to the rest of the program.

In fact, this is fine for its use in the verb-phrase procedure — re-define verb-phrase

appropriately, and confirm that this is the case. However, it does not work with noun-phrase.

Exercise 6 What happens if you re-define noun-phrase to use the new version of either?
Why?

�

Tidying-up “the”

You might feel that the way we’ve handled “the” is a hack — surely it should be part of the
definition of noun phrase, rather than just being tacked on to the front when constructing
sentences? If we could define noun phrase differently, then sentence could be:

(define (sentence) (append (noun-phrase) (verb-phrase)))

which is much clearer.

Exercise 7 Unfortunately, the näive approach — redefine noun phrase to be “the” fol-
lowed by a noun, or “the” followed by an adjective followed by a noun phrase — doesn’t work.
Why?14

�

Exercise 8 Supply a correctly re-defined noun-phrase which allows the new definition
of sentence to generate the same sentences as the old version.

�

The sentences produced all use intransitive verbs, that is there is only a single noun —
the subject. It would be much more interesting if we could also generate sentences using
transitive verbs which can then contain an object — a second noun. In fact, once we have

14Give an example of an undesirable phrase that could be generated.
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1.3. CARING Segment 1 Scheme

transitive verbs, the object can be a noun phrase, so that we could generate a sentence such
as (the dead drunk professor crushed wickedly the over-paid red computer)

Exercise 9 Augment the sentence generator to produce such sentences. You will need to
classify verbs as transitive or intransitive (using different lists would seem the easiest).

�

Incidentally, there are verbs which are neither transitive nor intransitive — to be is an
example.15

1.3 Caring

This section helps to consolidate your understanding of:

• Program reading and modifying,

• Working with Lists

There is a lot of program reading to do here before the first programming exercise. Please
don’t skip through this too quickly . . . it is essential that you understand the material before
trying the exercises. In particular, you should slow down your reading speed when looking
at the scheme code: make sure you really understand every element of a procedure before
moving on.

1.3.1 Background

These exercises deal with a drastically simplified version of a famous program called doctor

that was developed at MIT in the early 1960s by Professor Joseph Weizenbaum.16 The
doctor program engages in a “conversation” with the computer user, in which it mimics a
nondirective style of psychotherapy. In the following sample conversation, the user’s responses
are preceded by the prompt symbol **, and the program’s responses are shown in upper case.
In order to simplify the program, we omit most punctuation and represent the responses of
both the user and the machine as Scheme lists.

> (visit-doctor ’Bill)

(HELLO, BILL)

(WHAT SEEMS TO BE THE TROUBLE?)

**(everyone hates me)

(WHY DO YOU SAY EVERYONE HATES YOU)

**(whenever i enter a room no one will look me in the eye)

(MANY PEOPLE HAVE THE SAME SORTS OF FEELINGS)

**(they laugh at me behind my back)

(YOU SEEM TO THINK THEY LAUGH AT YOU BEHIND YOUR BACK)

15It is a copulative verb :-)
16The more famous name for this program is ‘Eliza’ [?].
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Segment 1 Scheme 1.3. CARING

**(they get together and talk about how they hate me)

(MANY OF MY PATIENTS HAVE TOLD ME THE SAME THING)

**(even my cat hates me)

(YOU FEEL THAT EVEN YOUR CAT HATES YOU)

**(when i was a teenager she said i was ugly and stupid)

(PLEASE CONTINUE)

**(she bit me all the time)

(WHY DO YOU BELIEVE SHE BIT YOU ALL THE TIME)

Although the doctor program seems to understand and reply to the user’s remarks, in
fact the program has just two simple methods for generating a response. The first method is
to take the user’s reply, change some first-person words like “I,” “me,” “my,” and “am” to
the corresponding second-person words, and append the transformed response to a qualifying
phrase such as “why do you say” or “you seem to think”. The second method is to ignore
what the user types and simply respond with some sort of hedge like “please continue” or
“many people have the same sorts of feelings.” The program chooses one of these two methods
at random.

Every interactive program, including the Scheme interpreter itself, has a distinguished
procedure called a driver loop. A driver loop repeatedly accepts input, determines how to
process that input, and produces the output. The visit-doctor procedure first greets the
user, then asks an initial question and starts the driver loop.17

(define (visit-doctor name)

(begin

(print (list ’hello name))

(print ’(what seems to be the trouble?))

(doctor-driver-loop name)))

The driver loop prints a prompt and reads in the user’s response. If the user says
(goodbye), then the program terminates. Otherwise, it generates a reply according to one of
the two methods described above and prints it.18

(define (doctor-driver-loop name)

(begin

(newline)

(display ’**)

17This procedure, and several others in the section, use the special form (begin expr1 expr2 ... exprN),
which takes a series of expressions (expr1 . . . exprN) evaluates them all in begin, and returns the value of
the last (exprN). The values of all but the last expression are ‘thrown away’. This might seem rather silly!
However, it is used when you wish to execute all but the last expression for their side-effects, such as (as in
this case) printing a value. This is commonly needed when dealing with input and output in programs. See
SICP §3.1.1 [?].

18This procedure, and several of the others, use the predicate equal?. This is the most general way of testing
whether two values are ‘the same’, and works for all types of value (not just numbers which is the case for the
= predicate). See RnRS, or SICP for details.
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1.3. CARING Segment 1 Scheme

(let ((user-response (read)))

(if (equal? user-response ’(goodbye))

(begin

(print (list ’goodbye name))

(print ’(see you next week))

)

(begin

(print (reply user-response))

(doctor-driver-loop name)

)))))

(define (reply user-response)

(if (fifty-fifty)

(append (qualifier) (change-person user-response))

(hedge)))

The predicate fifty-fifty used in reply is a procedure that returns true or false with
equal probability.

(define (fifty-fifty) (= (random 2) 0))

Qualifiers and hedging remarks are generated by selecting items at random from appro-
priate lists:

(define (qualifier)

(pick-random ’((you seem to think)

(you feel that)

(why do you believe)

(why do you say))))

(define (hedge)

(pick-random

’((please go on)

(many people have the same sorts of feelings)

(many of my patients have told me the same thing)

(please continue))))

The basis for the procedure that changes selected first person words to second person is
the following replace procedure, which changes all occurrences of a given pattern in a list
lst to a replacement:

(define (replace pattern replacement lst)

(cond ((null? lst) ’())

((equal? (car lst) pattern)

(cons replacement

(replace pattern replacement (cdr lst)))

)

(else (cons (car lst)

(replace pattern replacement (cdr lst)))

)))

16



Segment 1 Scheme 1.3. CARING

This is used to define a procedure many-replace, which takes as inputs a list lst together
with a list of replacement-pairs of the form:

((pat1 rep1) (pat2 rep2) ... )

It replaces in lst all occurrences of pat1 by rep1, pat2 by rep2, and so on.

(define (many-replace replacement-pairs lst)

(if (null? replacement-pairs)

lst

(let ((pat-rep (car replacement-pairs)))

(replace (car pat-rep)

(cadr pat-rep)

(many-replace (cdr replacement-pairs)

lst)))))

Changing the selected words is accomplished by an appropriate call to many-replace:

(define (change-person phrase)

(many-replace ’((i you) (me you) (am are) (my your))

phrase))

The procedure pick-random used by qualifier and hedge picks an element at random
from a given list:

(define (pick-random lst) (list-ref lst (random (length lst))))

Figure 1.1 shows the pattern of procedure calls indicated in the text of the doctor program.

visit-doctor

|

|

doctor-driver-loop

|

|

reply

|

-----------------------------------------------

| | | |

fifty-fifty qualifier hedge change-person

| | |

| | |

------------- many-replace

| |

| |

pick-random replace

Figure 1.1: Procedure calls in the doctor program.
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1.3. CARING Segment 1 Scheme

1.3.2 Exercises

In the following exercises, you will be making modifications to the procedures listed above,
as well as adding new ones to the program. Take a copy of:

/shared/rentedfs/cs-course/popl/Resources/Practicals/CurrentYear/caring.scm

into your working directory. Open it in DrRacket — use the File — Open menu item.

Exercise 10

• Run through a brief session with the modified program — it’s not very clever . . . yet!

• Edit the qualifier and hedge procedures to increase the doctor’s repertoire of quali-
fying and hedging phrases.

• Test your modified program.

�

What is the result of evaluating

(change-person ’(you are not being very helpful to me))

We can improve the doctor program by having it not only change first person words to
second person, but also second person to first. For instance, if the user types

(you are not being very helpful to me)

the program should respond with something like

(YOU FEEL THAT I AM NOT BEING VERY HELPFUL TO YOU)

Thus, “are” should be replaced by “am,” “you” by “i,” “your” by “my,” and so on. (We will
ignore the problem of having the program decide whether “you” should be replaced by “i” or
by “me.”)

Exercise 11 One idea for accomplishing this replacement is to simply add the pairs (are
am), (you i), and (your my) to the list of pairs in the change-person procedure. Edit the
procedure to do this. Now try evaluating

(change-person ’(you are not being very helpful to me))

What does the modified procedure return? Does it matter whether you add the new pairs to
the beginning or the end of the replacement list?
�

Exercise 12 Think19 carefully how to describe the bug in the method of implementing
replacement used above.
�

Exercise 13 Design a correct replacement method that will accomplish both kinds of
replacement (first person by second person as well as second person by first person). Write,

19Thinking is a practical exercise as well as programming!

18



Segment 1 Scheme 1.3. CARING

test, and debug procedures that implement your replacement strategy. Install these in the
doctor program.
�

Another improvement to the doctor program is to give it a third method of generating
responses. If the doctor remembered everything the user said, then it could make remarks
such as

(EARLIER YOU SAID THAT EVERYONE HATES YOU)

Exercise 14 Add this method to the program as follows.

1. Modify the program so that doctor-driver-loop maintains a list of all user responses.20

2. Modify the program so that reply occasionally replies by picking a previous user re-
sponse at random, changing person in that response, and prefixing the modified response
with “earlier you said that.” If you want more control over how often the program uses
each response method, you can use the following predicate, which returns true n1 times
out of every n2:

(define (prob n1 n2) (< (random n2) n1))

�

Exercise 15 The doctor currently sees only one patient, whose name is given in the call
to visit-doctor. When that patient says (goodbye), visit-doctor returns to the Scheme
interpreter. Modify the program so that the doctor automatically sees a new patient after
the old one goes away, and provide some way to tell the doctor when to stop. For example,
visit-doctor might terminate after seeing a particular number of patients (supplied as an
argument) or when it sees a patient with some special name (such as AlanSugar). You may
use the following procedure to find out each patient’s name:

(define (ask-patient-name)

(print ’(next!))

(print ’(who are you?))

(car (read)))

Now a session with the doctor might look like

> (visit-doctor)

(NEXT!)

(WHO ARE YOU?) (Alan Burns)

(HELLO, ALAN)

(WHAT SEEMS TO BE THE TROUBLE?)

**(everyone taking POPL hates me)

20For people who have scheme experience, or have been reading SICP , do not use set! in order to implement
this — it isn’t necessary.
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(WHY DO YOU SAY EVERYONE TAKING POPL HATES YOU)

...

**(goodbye)

(GOODBYE, ALAN)

(SEE YOU NEXT WEEK)

(NEXT!)

(WHO ARE YOU?) (Bruce Forsyth)

(HELLO, BRUCE)

(WHAT SEEMS TO BE THE TROUBLE?)

...

**(goodbye)

(GOODBYE, BRUCE)

(SEE YOU NEXT WEEK)

(NEXT!)

(WHO ARE YOU?) (AlanSugar)

(TIME TO GO HOME)

>

�

1.3.3 Going Further

Exercise 16 (Open-ended design project) Design and implement another improvement
that extends the capabilities of the doctor program in some significant way. For example,
you could give the program the ability to make a response that relates to what the user said.
The response to “I am often depressed” could be “When you feel depressed, have a pizza
at Caesars.” You can implement this by associating canned responses with key words, so
that when the user mentions one of the key words, the program selects one of the responses
associated with that word. The keyword-response list could look like

( ((depressed suicide)

( (when you feel depressed, have a pizza at Caesars)

(depression is a disease that can be treated) )

)

((mother father parents)

( (tell me more about your family)

(why do you feel that way about your parents?) )

)

)

The data structure used here is a list of lists, each containing a list of keywords and a
list of responses. A variation on this trick is to have the “canned” responses include slots to
be filled in with the key word that triggered the response. For example, with the following
keyword-response lists the doctor might respond to a sentence including “father” with “Tell
me more about your father.”
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( ((depressed suicide)

( (when you feel depressed, have a pizza at Caesars)

(depression is a disease that can be treated) )

)

((mother father parents)

( (tell me more about your *)

(why do you feel that way about your * ?) )

)

)

Alternatively, you could generalise the structure of the doctor program so that instead
of having a collection of keywords to check for, the program has a data structure containing
a collection of arbitrary predicates (procedures) and associated “response procedures”. If the
user’s typed response is found to satisfy one of the predicates, then the program uses one of
the associated response procedures to generate its reply. For instance, including the predicate

(lambda (user-response) (< (length user-response) 3))

would allow the program to react to very short answers with a reply such as “Could you say
more?”

Implement your modification. (You need not feel constrained to follow the suggestions
given above.)
�
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Segment 2

Interpreters: Tools and Techniques

Background

All the subsequent segments assume that you have continuous access to a copy of the 3rd

edition of Essentials of Programming Languages [?]. Although many of the exercises here will
be taken directly from EOPL, they will often refer to the text of that book, which you will
need to read.

Some exercises will be in addition to, or be variations on the EOPL exercises. However,
to help orient yourself, the EOPL exercise corresponding to each of those here is noted in the
margins.

The amount of detail given in these segments will decrease as you go along. You will have
to refer to EOPL for many of the later exercises as they will not be repeated here. However,
by the time you get there you will have a sound knowledge of the methods for producing the
solutions, and will be able to concentrate on actually solving the questions.

Introduction

In order to become familiar with the tools, you’ll implement an interpreter for a very simple
language. This will follow EOPL quite closely, although the material will be presented with
a view to learning the tools rather than the language itself.

Reading

a) If you’ve not read [Chapter 1], do so.

b) The following are essential for this (and following) segments:

[§2.4] Describes the (define-dataype ...) and corresponding (cases ...) special forms.
These are implemented as macros and so have a non-standard evaluation model.
These will be used extensively in implementing the langauges in all the following
segments . . . you need to understand their use!

[§2.5] Will help with understanding how the syntactical entities are represented.

[§3.1-3.2.6] Gives the foundation for the implementation techniques to be used later.
[§3.2.7] onwards will be needed for Segment 3, so you can read it now, or leave it
until then.

[Appendix B] Describes the scanning and parsing tools to be used — some of the detail
is summarised from page 53 (Appendx B).
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2.1. CORE Segment 2 Interpreters: Tools and Techniques

2.1 CORE

We shall start by creating a very simple programming language that consists of expressions,
but has no way of naming values. This means that all values are interpreted explicitly —
they will represent numbers and truth-values. We shall call this language CORE.1

The main goal of this segment is to create a basis for the more interesting languages which
we shall see in later sections and segments, but concentrating on getting used to the tools and
procedures that we shall be using (repetitively) as each new language or feature is developed.

2.1.1 Syntax

The syntax of CORE is:

Program ::= Expression
Expression ::= Number

| - ( Expression, Expression )

| zero? ( Expression )

| if Expression then Expression else Expression

Examples of programs that conform to this grammar are:

• 24

• -(3, 4)

• if zero?( 4 ) then 10 else 5

• if zero?(1) then 10 else if zero?(1) then 1 else 2

• if zero?(1) then 10 else -( 400, if zero?(1) then 1 else 2)

From this grammar we can use the EOPL scanning and parsing tools to produce a syntax
checker for this language. If you haven’t done so already, read [Appendix B] which gives
details of how to use SLLGEN to create parsers.

Exercise 17 Implement a parser for CORE. To do this:

1. Copy into your working directory the code the files

• syntax.scm

• tests.scm

which are found in /shared/rentedfs/cs-course/popl/Resources/Practicals/CurrentYear/CORE.
These (and other) files contain the basic structure for the implementation of CORE.2

1This does not appear explicitly in EOPL, but in fact it is the first language presented there, but with
variables omitted. Segment 3 studies that language.

2For convenience, these files are listed in Appendix C. Note that they all begin with #lang eopl, the
scheme dialect associated with EOPL, which you will be using from now onwards.
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2. Open these in DrRacket . . . I recommend using separate tabs, rather than separate
windows.3

3. Replace the ‘gaps’ indicated by ??? with single or multiple expressions.

Some points to note:

• (require file) tells DrRacket to load the definitions exported by the string file

• (provide ...) exports — makes visible — definitions from the file in which it is
executed. (provide (all-defined-out)) exports all definitions.

• Some (require ...) expressions are commented out so that their code can be
edited in subsequent exercises

Don’t forget to save your modifications as you proceed!

4. Test your parser by Runing tests.scm, and then executing (scan&parse prog) —
defined in syntax.scm — where prog is one of the CORE programs (strings) defined in
tests.scm.

The output of (scan&parse ...) will be a display of the internal data-structure that
represents the abstract syntax for the program. For example:

> (scan&parse Hmm?)

#(struct:a-program

#(struct:zero?-exp #(struct:zero?-exp #(struct:const-exp 0))))

�

Note This is not a module about compilers (see SYAC), so only the simplest parsing tool
(SLLGEN) is used. This will generate parsers for grammars which are called LL(1) — which
is quite limiting — so the languages will be carefully designed to conform to this, and con-
sequently might seem a little inflexible. To do better requires a more sophisticated parser
generator, such as yacc (or its derivatives), which will construct parsers for the more general
LALR(1) grammars.

Exercise 18 Create some more CORE programs in tests.scm, and test them.
�

2.1.2 Semantics

Producing a parser is interesting in itself, but it’s not much use unless CORE programs can be
executed. This implies that we need to process syntactically-correct programs — those that
the parser has successfully analysed — to find their value, or meaning.

The meaning of a program is specified by means of a semantic function, which in these
scripts will be called (execute ...). This will call on another function which analyses the

3This behaviour can be set from the Edit|Preferences|General tab.
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program in terms of its constituents, and constructs the final value. In these scripts, this will
be called (value-of ...).4

The exact nature of the (value-of ...) function will vary with the language being
implemented, and this includes the number and type of the parameters. For the CORE
language, the only argument will be a value which represents the abstract syntax tree of the
program as supplied by the (scan&parse ...) function described in section 2.1.1

Expressed Values

Before being able to specify the (value-of ...) function, we need to be clear what we mean
by a value. We need to distinguish between three classes of values: Expressed, Denoted,
and Storable,5 and so we need to provide interfaces to these kinds of data as explained in
[Ch. 2]. We will make use of the (data-structure ..) and (cases ...) facilities provided
in DrRacket , which you should review [§2.4] before continuing.

Exercise 19 Implement the Expressed Values data-type. To do this:

• Copy data-structures.scm from

/shared/rentedfs/cs-course/popl/Resources/Practicals/CurrentYear/CORE.

• Open in a new tab in DrRacket .

• Replace the ??? with the correct code.

To test your solution, hit the Run button while in the tab that’s displaying data-structures.scm.
Since the code in this file doesn’t require any other file’s exports, it can be tested indepen-
dently.

For some test examples, try evaluating (in the interactions window):

(->ExpVal 10) (->ExpVal #t) (->ExpVal "hello") (<-ExpVal 10)

(<-ExpVal (->ExpVal 123))

. . . and others of your own.
�

Specifying (value-of ...)

Finally, you can implement the value-of \ldots) function. This should be done by carefully
thinking how it is to provide the value of its argument in terms of the values of its argument’s
components. Essentials of Programming Languages describes how to approach this [§3.2.4–
3.2.7], and you should follow their method. However, where the book refers to ‘environments’
that can be ignored for CORE . . . Segment 3 will incorporate this later.

Exercise 20 Complete the skeleton code so that the basic CORE language is implemented.

4You may, of course, call it anything you like. Typical alternatives might be eval evaluate interpret

interp meaning-of etc. although at least one of these is already used by scheme, so redefining it might have
strange effects!

5These will be/have been covered in the POPL lectures, and [§3.2.2], which you should review now.
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• Specify the behaviour of (value-of ...) as shown in [§3.2.4–3.2.7] — this is a paper
design task!

• Copy the remaining skeleton files from
/shared/rentedfs/cs-course/popl/Resources/Practicals/CurrentYear/CORE, and
open them in new tabs.

• Uncomment the remaining (require ...) calls from the files worked on in exercise 17.

• Replace the ??? with the correct code.

Hints

• Think carefully about what kind of value (value-of ...) should return.

• (value-of ...) can be used recursively.

• Keep the difference between meta-language, and object-language clear in your mind.

�

Testing You should test your solution against the example CORE programs in test.scm.
This is most conveniently done using the (run ..) function defined in driver.scm which
takes a program string, evaluates it, and returns the scheme value that is extracted from the
expressed value produced by (execute ...) It’s instructive to trace through the sequence of
calls that occur.

2.2 Extending CORE

You now have a complete interpreter for basic CORE programs. All subsequent segments will
use the same working method, and will be based on a similar set of files, and relationships
between them. In fact, you will be able to take copies of a segment’s solutions and then
modify them to do the exercises in a later segment.

To demonstrate this, you should now extend CORE with some new facilities.

Exercise 21 Extend CORE to include the following numeric predicates which evaluate [3.8 ]

to boolean values:
equal?(x, y) is true iff x = y
greater?(x, y) is true iff x > y
less?(x, y) is true iff x < y

Test your extended version.
�

Exercise 21 shows that it can be tedious to add new primitive operations to a language,
as they all follow a similar pattern. The following exercise asks you to refactor— change
the implementation without altering the functionality — your CORE implementation in a
particular way.

Exercise 22 Refactor the CORE code so that adding new primitive operators is easier. [3.11 ]

Test your modified version.
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Hints

This can be done in a number of ways, but I’ve found that making use of some of the supplied
scheme library functions for processing lists was very convenient. I recommend looking at the
(assoc ...) function, and others in the so-called ‘SRFI 1’ library.

The description of these can be found by following the Help|Racket documentation item,
searching for “srfi” in the browser window that opens, and then clicking through the ‘SRFI
1’ links.

To access these definitions you will need to add (require srfi/1) to the scheme code
file that uses them.
�

Exercise 23 Extend CORE as modified in Exercise 21 (or 22 if you chose to do it) to[3.6, 3.7 ]

include the following operators which evaluate to numeric values:
minus(x) evaluates to −x
+(x,y) evaluates to x + y
*(x, y) evaluates to x× y
/(x, y) evaluates to x÷ y

Test it!
�
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Segment 3

Names

In this segment you will build on the simple CORE language that you implemented in Seg-
ment 2. This will involve a single fundamental modification to CORE (introduction of names),
and several other additions — both simple and challenging — to create a new more powerful
language.

There will be much less ‘housekeeping’ detail given in this and subsequent segments: the
workflow for progressing through the exercises will be the same as for Segment 2 — for each
addition:

1. Extend or modify the grammar and lexical specification from an earlier version where
necessary,

2. Implement a parser . . . test and debug,

3. Extend , implement , or refactor the interpreter function . . . test and debug.

4. Design and run even more tests!

Whenever the details given are incomplete or ambiguous, make suitable design decisions of
your own. For the more challenging exercises some hints will be given, but there will normally
be alternative ways of solving a problem, so don’t be constrained by the hints.

As before, there will be essential exercises, which must be completed and some optional
ones, which should be completed (or attempted!).

Reading

[§3.2] contains all you need for completing the fundamental exercises.

[§2.2] explains the implementation choices for environments.

3.1 LET

Start by taking copies of the files you used for CORE, and work with those. When testing
your solutions, add new program examples to the tests.scm file, and Run from there — it’ll
save lots of typing later!

3.1.1 Syntax

The full syntax for LET is given in [Figs. 3.8, 3.9]. However, there is only one fundamental
addition to CORE that LET introduces — the facility to name values. This involves adding
two new productions to the syntax:
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Expression ::= . . .
| Identifier
| let Identifier = Expression in Expression

This doesn’t specify what an Identifier is. This could be done as part of the grammar,
but it’s more appropriate, and efficient, to make it part of the scanner.

Exercise 24

a) Modify the lexical specification used for CORE to recognise identifiers.1

You may use any sensible definition of what constitutes an identifier here, but try to make
it as general as possible (but no more so). For instance, it could be as simple as a letter
followed by a digit, or as general as that used for scheme identifiers.2

b) Test your lexer. This can be done without altering the parser specification!

�

Exercise 25 Implement and test a parser for LET.[Fig. 3.8 3.9 ]

�

3.1.2 Semantics

Environments

To implement the semantics of LET we need to maintain an environment of bindings for the
names so that their values can be retrieved when needed by the interpreter function. The
book gives a detailed discussion of ways of implementing environments [§2.2, 3.2.3] which you
should read.

For POPL purposes we can use any method without regard for efficiency, and so . . .

Exercise 26 Implement and test the representation of environments as shown in [Fig. 2.1].

�

Exercise 27 Implement and test the interpreter functions for LET by modify ing the CORE
implementations of (execute ...) and (value-of ...).[§3.2.8]

Hint

Be green — take care of your environment(s).

�

1Reread [Appendix B] if you’re stuck!
2See RnRS.
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3.2 Extending LET

Exercise 28 Extend LET to incorporate a multi-way conditional. You should add the [3.12 ]

following production to the grammar:

Expression ::= cond {Expression ==> Expression}∗ end

The semantics should follow that of scheme (see RnRS) except that, if none of the expres-
sions on the left-hand sides of the ==> selectors are true, then an error should be reported.3

Hint

Review the arbno or separated-list pattern keywords in the SLLGEN grammar specifi-
cation [§B.3]. They can be awkward to use, and the corresponding case in (value-of ...)

needs some careful thought. It’s a bit like the replace / many-replace problem in sec-
tion 1.3.1.
�

All serious languages provide ways of producing composite values, and currently we have
no such facilities in LET. Rather than supplying many different ways of structuring data, we
shall take the purist view, as exemplified by scheme, and provide a single structuring method:
lists.

Exercise 29 Extend LET to incorporate lists of values as follows:4

a) Add expressions for creating and operating on lists to the language. These are defined [3.9 ]

as follows:

[] as scheme ’()

cons(x, lst) as scheme (cons x lst)

car(x) as scheme (car x)

cdr(x) as scheme (cdr x)

null?(x) as scheme (null? x)

Hints

• Be very clear about the meta versus object language distinction.

• This can be tackled in several ways. I favour modifying the Expressed Values repre-
sentation. Review how lists are defined in scheme— see RnRS, or SICP— or in other
languages such as Haskell.

b) Add a primitive expression which forms lists from multiple, comma-separated arguments. [≈3.10 ]

Since these lists will be another form of expression, syntax will be:5

3How does this differ from the scheme definition?
4This exercise is challenging enough to be optional. However, if you don’t add lists, only very dull programs

can be written, especially when recursive definitions are introduced in Segment 4
5EOPL suggests a different syntax for this, but I prefer this way! See how easy it is to change the look of a

language, without affecting its meaning ! What does this tell you about the relative importance of syntax and
semantics?
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3.2. EXTENDING LET Segment 3 Names

Expression ::= [ Expression {, Expression}∗ ]

Hint

• You might want to check the (fold-right ...), and (map ...) functions from the
srfi/1 list processing library mentioned in Exercise 22.

�

Exercise 30 Extend LET to have an operation print that takes one argument, prints[≈3.15 ]

it and returns the Expressed Value of its argument expression.

�

Currently the only way to specify multiple name bindings for an expression is to use nested
let expression, such as:

let x = 10 in let y = -(10,3) in another = 42 in +( another, *(x, y))

which is annoying.

Exercise 31 Modify LET to allow let to accept any number of identifier bindings. The[3.16 ]

grammar should be extended with:

Expression ::= let {Identifier = Expression}∗ in Expression

The semantics should follow that of scheme (see RnRS): each right-hand side is evaluated
in the environment of the let expression. The body expression is then evaluated in the
environment obtained by extending the environment of the let with the bindings specified.

Since the order in which the right-hand sides are evaluated is undefined, it should be an
error for an identifier to appear on the left-hand side of more than one binding, however it is
not an error for an identifier to appear in a right-hand side expression or expressions, and in
(one) left-hand side.

�

Sometimes even the multiple-binding let is too restrictive, and a set of bindings needs to
be made in sequence, as would be the case with nested lets.

Exercise 32 Extend LET with a sequential binding expression with the following syntax:[3.17 ]

Expression ::= let* {Identifier = Expression}∗ in Expression

The semantics should, again, be that of scheme’s let* so:

• Each binding is executed in an environment extended by the ‘earlier’ bindings in the
let*.

• It is not an error for an identifier to appear on more than one left-hand side.
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Hint

• I found fold-right and reverse, from the srfi/1 library, useful.

�
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Segment 4

Procedures

LET is a simple expression evaluator. For all practical programming though, it is severely
limited — it’s not even Turing-complete.1 To be able to write any useful programs, we need
the ability to abstract expressions — we need procedures, and we will want definitions of
procedures to allow recursion.

This segment will modify LET in two stages: firstly by adding procedures, then by adding
a binding construct for recursive definitions. Finally, a variation of the language in which the
scoping rule differs from the ‘standard’ will be derived.

Since you will be developing three new languages from LET, there is a lot of work here.
Much of this is explained in detail in EOPL, so you should allow time for reading the appro-
priate sections.

Reading

[§3.3] describes in depth how procedures are to be incorporated. Necessary for exercises 33
and 34.

[§3.4] details how recursive definitions are to be provided. Necessary for section 4.2.

[§3.5] is a good explanation of the ‘standard’ lexical scoping rule. This is an excellent back-up
to the POPL lectures. Background for section 4.3.

4.1 PROC

4.1.1 Syntax

Procedures need to be defined, and invoked. So we need to add two new productions to
the grammar to cover these two types of phrase. But the question arises: “What kind of
syntactical phrase is a procedure definition?”. Many old-fashioned languages put procedure
definitions or declarations in a syntactic class called ‘statements’. However, modern languages
(and some ground-breaking older languages) classify procedure definitions as expressions, and
we shall do the same.

The initial design will be for procedures to take exactly one argument (but see exercise 37),
and for procedure invocation to follow the scheme form. Therefore the two new productions
required for PROC are:

1Why not?
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4.1. PROC Segment 4 Procedures

Expression ::= . . .
| proc (Identifier )Expression
| (Expression Expression )

Exercise 33 Derive a new grammar for PROC from LET. Implement the scanner and
parser, and test them against a variety of PROC programs.

�

4.1.2 Semantics

Introducing procedures has a number of significant effects on the language, and these are
reflected in the semantics:

• Since procedures are the results of expressions, this type of value must be included
in the langauges Expressed Values. This implies modifications to the ExpVal data-
structure, which in turn requires decisions to be made on how procedure values are to
be represented. Be clear about the meta- and object-language distinction (again).

• Procedure bodies must be evaluated in the correct environment which will, in general,
be different from the environment in which the procedure was defined.

EOPL deals with these and other issues.

Exercise 34[§3.3]

a) Derive and implement an interpreter for PROC starting with that for LET.

b) Design a suite of test PROC programs, run them, and debug as necessary.

You should include in your tests (at least) the examples in [p.76, Ex 3.22, 3.25]

�

It’s convenient to be able to define a procedure, and bind the value to a name in one
statement. In fact, most langauges allow this, even if procedure value are not first-class.

Exercise 35 Extend PROC with a procedure binding construct, whose syntax is:[3.19 ]

Expression ::= . . .
| letproc Identifier (Identifier )Expression in Expression

The effect of a letproc expression such as:

letproc thing(x) .. in ...

should be the same as:

let thing = proc (x) .. in ...

�
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Currying

It might seem that having single-parameter procedures is too limited for practical program-
ming. However, as seen in the lectures,2 procedures with any number of arguments can be
programmed with single-parameter procedures, provided that procedure values are first-class.

For instance, if we could define procedures which take two arguments in PROC,3 we might
write:

letproc f(x y) ... in (f 10 23)

With single argument procedures, the same functionality can be obtained with:

letproc g(x) proc (y) ... in ((g 10) 23)

That is, (g 10) returns a procedure which, when applied to 23 give the same result as
(f 10 23). This technique is called currying. Since PROC procedures are first-class values,
we can demonstrate this:

Exercise 36 Design and test a procedure, using Currying, which takes two arguments [3.20 ]

and multiplies them together.
�

Even though Currying is all you need it is, perhaps, syntactically neater to allow procedure
declarations with multiple parameters.

Exercise 37 Modify PROC so that procedure declarations can take multiple parame- [3.21 ]

ters:

Expression ::= . . .
| proc ({Identifier}∗ )Expression
| (Expression {Expression}∗ )

This is quite a challenging exercise!

Hints

• Be clear about what environment(s) to evaluate in.

• You choose whether or not to use separators (such as commas) in the parameter lists
. . . the above syntax shows no separators.

• Decide how to check that the number of argument in a procedure invocation is the same
as in its declaration.

�

Most languages do not distinguish syntactically between calls to built-in procedures, such
as zero?(...), and user-defined procedures. This makes a program look neater! PROC
differentiates between these.

Exercise 38 Modify the PROC language of exercise 34 or 35 so that the procedure call [3.22 ]

2. . . and demonstrated in modern langauges like Haskell.
3We can’t yet, but see exercise 37.
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syntax is the same as that for primitives:

Expression ::= . . .
| Identifier(Expression )

This is much harder than would seem to be the case at first sight. If SLLGEN were more
powerful than LL(1), then it would be relatively straight-forward. Interestingly, it is the
parser that is hard to write here, and this complicates the design of the semantic function.
Have a go!
�

When debugging programs, especially those where recursion is involved (see Section 4.2),
it is often valuable to be able to see the sequence of calls to procedures, together with their
arguments when called and their returned results.4

Exercise 39 Extend PROC to have a traceproc declaration which has the same effect[3.27 ]

as proc, except that when a procedure declared with traceproc is invoked, the value(s) of
its argument(s) and its result are displayed as a ‘side-effect’. It should behave exactly like a
procedure declared with proc otherwise.

Test this by ‘tracing’ examples that you used as tests for PROC earlier: in particular, the
example in [Ex 3.25] is ‘interesting’.

Hint

• Review the scheme (display ...) procedure.

• Review the scheme (begin ...) special-form.

�

4.2 LETREC

The final piece in our language jigsaw5 is to introduce self-referential definitions — otherwise
known as recursion. Syntactically this seems trivial . . . merely allow left-hand sides of let
bindings to appear as components of the right-hand side expressions of the same binding: in
fact, unless you’ve been really sophisticated with error checking, this is syntactically allow-
able in LET!6 However it’s the semantics that get awkward. Specifically, it’s deciding what
environments the various expressions are evaluated in, and ensuring that they are produced
correctly, that needs clear thinking.

4.2.1 Syntax

To ensure that the recursive bindings are easily distinguishable from the non-recursive ones
— both to the programmer, and the interpreter — a new binding construct, letrec, is
introduced with the following syntax:

4DrRacket scheme, and some other implementations, provide a (trace ...) special-form for doing this.
5Until we decide to change the picture!
6Try running "letproc p(x) (p x) in 1" — you even get the right answer! But now try "letproc p(x)

(p x) in (p 1)" . . .
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Expression ::= . . .
| letrec Identifier = Expression in Expression

4.2.2 Semantics

As suggested above, implementing the semantics of letrec involves concentrating on how to
process the environments. This is dealt with in detail [§3.4],which you must read. Then the
following exercise becomes trivial.

Exercise 40 Derive LETREC from PROC by adding the new production for letrec

expressions and modify ing the interpreter.

�

You now have a powerful enough language to, finally, do the following:

Exercise 41 Implement the factorial function in LETREC. Enjoy!

�

Since Exercise 40 was so easy (given the explanation in EOPL), you should choose to do
the following, optional, exercise.

Exercise 42 Extend LETREC so that the procedure declared in a letrec expression can [3.31 ]

have any number of arguments.

The difficulties here are ‘mere’ scheme coding. By now you should be quite good at that!

Hints

• fold-right and map could be useful again.

�

The next stage is to have multiple bindings in a letrec

Exercise 43 [3.32 ]

a) Extend LETREC, or the extended version of Exercise 42, to allow the declaration of any
number of mutually-recursive procedures.

b) Test the extended language on the program given in EOPL Exercise 3.32

�

Exercise 44 Test your language with the programs given in EOPL Exercises 3.23 and [3.23, 3.25 ]

3.25, confirming that they evaluate to the integer 12.

�

Exercise 45 Design, implement and test a LETREC program using the techniques of [3.24 ]

Exercise 44 which has the same behaviour as that of Exercise 43.
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If you decided not to attempt Exercise 43, perhaps you might like to re-consider?

�

Exercise 46 Extend the language of Exercise 43 to allow the declaration of any number[3.33 ]

of mutually recursive procedures of any number of arguments.

�

4.3 Scopes

You will by now be very familiar with the fact that the binding of a name can vary within
a program. This means that whenever a name is to be evaluated, a programmer, or the
interpreter implementation, must ‘know’ which binding to look at in order to decide the
name’s meaning. The scope of a binding determines where in the program the meaning of
the name is that of the binding.

The vast majority of programming languages use a rule called static, or lexical scoping
— this is the rule used by LETREC and its predecessors. In the final section of this segment
you’ll look at an alternative form of binding rules, called dynamic scoping.

Exercise 47 Read [§3.5] which expands on the material given in the POPL lectures.

�

The implementation of a particular scoping rule is a matter of deciding which environment
contains the binding for a name when an expression using the name is evaluated. With static
scoping, the meaning of a name is contained in the environment in force when the binding is
encountered in the program text.7 This includes the binding of names to procedural values —
the meaning of the name is the meaning of the procedural definition, the body of which takes
its meaning from the environment in force when the binding occurs.

However, static coping isn’t the only choice. An alternative, sometimes (but rarely) seen,
is to evaluate the procedure body in the environment in force when invoked, that is at the
point when the procedure is called. This is called dynamic binding, or referred to as the
dynamic scoping rule.

In many cases, the results obtained from static- and dynamic-binding are the same, but
not always, as you will see in the following exercises.

Exercise 48[3.28 ]

1. Work out — by hand — what result this program would produce if LETREC were to
use dynamic scoping :

let a = 3

in let p = proc(x) -(x,a)

a = 5

in -(a, (p 2))

7Hence the use of the term ‘lexical’ scoping.
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2. Run this program with you r(statically-scopes) LETREC, and confirm that the results
are different.

�

Exercise 49 [3.28 ]

a) Create a new8 version of LETREC so that it uses dynamic scoping as described above.

b) Test the modified language by evaluating the program given in Exercise 48, and confirm
that the result is what you predicted.

�

Dynamic binding can be useful, but introduces significant opportunities for obscure errors.

Exercise 50 Do [Ex 3.29] — work it out without running the example first ! [3.29 ]

�

One interesting property of dynamic scoping is that it can be used to simulate recursive
bindings — it becomes possible to use let ‘recursively, without any need for letrec.

Exercise 51 Evaluate the following factorial program using both of your versions (static [3.37 ]

and dynamic) of LETREC:

let fact = proc(n) +(n,1)

in let fact = proc(n)

if zero?(n)

then 1

else *(n, (fact -(n,1)))

in (fact 10)

If you did Exercise 39, try changing the procs to traceprocs. Does this help you under-
stand what’s going on?
�

Exercise 52 Exercise [Ex 3.32] defines two mutually-recursive procedures which calcu- [3.37 ]

lates whether a number is even or odd. Implement (and test) these without using letrec.

�

4.4 Summary

You have implemented a usable, concise, complete functional programming language! It’s not
particularly ‘efficient’ in terms of time or storage use, but that is not the purpose of POPL
. . . SYAC will deal with some of those issues.9

8Keep the old statically-scoped version since you will be using it as the starting point for subsequent
segments.

9Other parts of EOPL address these too.
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If POPL were only about producing a complete programming language, we need go no
further. However, there are various other principles of many programming langauges that
need to be addressed, and these will be seen in the following segments.
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State

THe langauges that have been implemented so far have the property that wherever a particular
expression appears within a particular scope, it has the same meaning — this is the property
of Referential Transparency. This boils down to the fact that a name either has no meaning
due to it being unbound, or it has the meaning given by the binding in its ‘closest’ scope. Of
course the meaning of a name can be altered by an inner let or letrec, but this alteration is
only local in scope, with the ‘earlier’ meaning being restored (automatically) when the inner
scope is exited.

In this segment you will see the effects of disposing with referential transparency in favour
of being able to modify the meaning of names globally. This involves the introduction of two
new concepts:

• References

• Sequencing

5.1 EXPLICIT-REFS

The modifications that will be required to LETREC to produce EXPLICIT-REFS are:

a) The extension of the set of Expressed Values to incorporate a new type of References

b) The implementation of an additional data-structure called a store, which provides a globally
modifiable memory. This is used to model the idea of mutable state.

c) The introduction of three new primitives for dealing with references.

All these will involve modifications to the parser and semantic functions. EOPL is the
prime source for understanding what is required, and therefore you should read [Ch.4]. The
material in [§4.4] will not form part of the practicals, so that can be skipped if you like. [§4.5]
will be covered in Segment 6.

Reading

[§4.1] motivates the consideration of state and its manipulation as an example of the wider
concept of computational effect.

[§4.2.1] gives examples of how the semantics of LETREC expressions need to be re-specified
for EXPLICIT-REFS.
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5.1.1 Sequencing

For the previous langauges, the only concept of sequence of evaluation has been that an
expression must be evaluated before its value can be used. This is implicit in the way the
semantic function has been implemented. However, now that there is to be a store that can
be mutated globally, the order in which some expressions are evaluated becomes significant,
and so we need to be able to specify this order.

Syntax

EXPLICIT-REFS will introduce the very familiar sequencing construct:

Expression ::= . . .
| begin Expression {; Expression}∗ end

Exercise 53 Modify (your copy of) the LETREC parser to accept this begin-end con-
struct, and test.

�

Semantics

THe begin-end sequencing construct is reasonably straight-forward but, to encourage careful
thought:

Exercise 54 Specify, on paper, the behaviours of the begin-end expression.[4.4 ]

Hints

• Use the methods for other specifications in EOPL,

• Consider the environment as always,

• Remember that it is an expression.

�

Now that you are clear about the sequencing construct’s semantics . . .

Exercise 55

a) Implement begin-end for EXPLICIT-REFS.

b) Test your implementation. There is only one language facility that can show this working!

�

5.1.2 References

Read [§4.2] if you’ve not already done so!
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Syntax

The second syntactic addition will be the introduction of three new primitives:

Expression ::= . . .
| & (Expression ) | ^ (Expression ) | := (Expression , Expression )

In EOPL these are presented as newref, deref, and setref! respectively. I prefer these
shorter names.

Exercise 56 Modify the EXPLICIT-REFS parser from Exercise 53 to accept these primi-
tives and test it.

�

Semantics

Before its possible to implement the semantics for these primitives, two things have to be
done:

1. Design and implement (a representation of) the store, and

2. Extend the expressed Values data-type to incorporate a representatno of references

Both of these topics are well presented in EOPL, as you will have seen when you read [§4.2]
earlier. So the following exercises should be relatively simple.

Exercise 57 Modify your expressed Values data-structure to include references. As will [§4.2]

be seen in EOPL, the simple store model (Exercise ??) expects integers as the representation
of locations, so you need to be able to inject such numbers into ExpVal as the representation
of references.

Test your code!

�

Exercise 58 Implement the simple store model given in EOPL. [Fig. 4.1 ]

[Fig. 4.2 ]

Hints

• There may be some variations that will be needed depending upon how carefully you
did Exercise 57.

�

Finally you can add clauses to the semantic function to evaluate the three new primitives.
Read [§4.2.2] for their specification.

Exercise 59 [Fig. 4.9 ]

1. Implement the EXPLICIT-REFS primitives.
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Hints

• [Fig. 4.9] gives you a start

• Don’t forget that the store needs to be initialized (created).

2. Test with simple programs at first, but then at least those shown on [p.105].

�

Since order of evaluation is now a vital consideration, you should look at every place in
the language definition where this was left unspecified before. In particular:

Exercise 60[4.5, 4.11 ]

1. Specify the [ ... ] list constructor, ensuring that the evaluation of its arguments or
defined precisely.

2. Implement the specification.

3. Test it

What about procedure arguments?

�

Exercise 61

1. Modify EXPLICIT-REFS to use { and } instead of begin and end.

2. Test with all previous programs.

3. Trivial isn’t it?

�

5.2 IMPLICIT-REFS
[§4.3]

Some, usually quite old, langauges follow the EXPLICIT-REFS model of providing primitives
for explicitly dealing with references — the C family is probably the most commonly used.
However most others use references implicitly, often in quite subtle ways — Java is an inter-
esting modern example in which all objects are accessed via references.

In this section, the LETREC language will form the basis for IMPLICIT-REFS, in which
all names1 will be bound to references. These references will be created wherever there is
a binding operation. Remember, binding occurs as a result of the let-type expressions and
when procedure arguments are evaluated in procedure invocation.

1Such names are commonly-called variables, and this terminology will also be used here.
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5.2.1 Syntax

There is only one syntactical addition to LETREC2 to form IMPLICIT-REFS: the provision of
an assignment primitive:

Expression ::= . . .
| set Identifier = Expression

Exercise 62 Derive a parser for IMPLICIT-REFS from LETREC by adding the production
for set.
�

5.2.2 Semantics

EOPL gives a clear explanation of the sematnics for IMPLICIT-REFS, and guides you through
its implementation.

Exercise 63 [§4.3]

a) Implement IMPLICIT-REFS

b) Test with [Ex.4.16]

�

If you have not done so already, you should add the extensions to IMPLICIT-REFS that
you implemented for LETREC:

Exercise 64 Extend IMPLICIT-REFS to match your implementation of LETREC: [4.17 ]

[4.18 ]

[4.19 ]
• Multiple binding let

• Multi-argument procedures

• Multi-procedure letrec and/or letproc

�

5.3 Going Further

EOPL ends this journey with IMPLICIT-REFS by suggesting a change from an expression-
oriented language to a statement-oriented language. This is the model followed by all imper-
ative programming langauges — the sort that most people are familiar with.

Exercise 65 [4.22 ]

a) Implement the language defined in [Ex. 4.22], and test with the example programs given
there.

2Remember: IMPLICIT-REFS is derived from LETREC, not EXPLICIT-REFS!
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b) Extend this language according to the suggestions in [Ex 4.23–4.25]

�
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Parameter Passing

Now that references have been introduced, it is possible to look in detail at the various
argument-passing choices that language-designers have available, in addition to the common
call-by-value that’s been used up until now.

This segment will modify IMPLICIT-REFS in three ways to demonstrate:

• Call-by-reference

• Call-by-name, and

• Call-by-need

The surprising thing is, perhaps, how straight-forward it is to vary the basic language
implementation to provide these new behaviours.

The description in EOPL is very clear, and takes you through this step-by-step, conse-
quently this segment’s text will be brief and will merely refer you to the book.

Reading

[§4.5] Read this from start to finish . . . it’s only 8 pages!

6.1 BY-REFERENCE

Exercise 66 [§4.5.1]

1. Read [§4.5.1]

2. Implement BY-REFERENCE as detailed in [§4.5.1]

3. Test it.

4. Do [Ex 4.31–4.34]

�

Exercise 67 Extend BY-REFERENCE to incorporate arrays [4.36 ]

�
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6.2 BY-NAME

Modern programming languages (and some pioneering older ones) are able to make good use
of Lazy Evaluation. This comes in two varieties:

• Call-by-name

• Call-by-need

These are very well described in [§4.5.2], which demonstrates how easy it is to convert
IMPLICIT-REFS into a lazy programming language.1

Exercise 68[§4.5.2]

1. Implement BY-NAME as explained in EOPL.

2. Implement BY-NEED.

�

6.3 Going Further . . .

There are many ways in which you could continue to work on the language(s) that you’ve
developed Here are some suggestions

1. Try the hard exercises in EOPL. These are marked with [***] in the book.

2. Design a new, or several new, langauges that differ from the LETREC family in their
syntax, but with no change to their semantics. Exercise 61 is one trivial example. You
might find yourself constrained by the SLLGEN parser-generator technology of course,
in which case make this a paper exercise. Alternatively, develop a better (LALR(k))
version of SLLGEN yourself!2

The important point to this is that it’s the semantics not the syntax the defines a
langauges power, or facilities etc., even though it’s the syntax that makes it attractive
(or not) at first sight.

3. Use you imagination!

1It is also pointed out that lazy evaluation is very awkward to use in the presence of mutable state —
assignment — and so the resulting language should be used with care!

2That would be rated as [****], at least!
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Appendix A

scheme Code Skeletons

Skeletons for the code for section 1.2 (you have to fill in the ??? with appropriate expressions):

(define (sentence)

(append (append ??? (noun-phrase)) ;; ???
(verb-phrase)

)

)

(define (noun-phrase)

??? ;; ???
)

(define (verb-phrase)

??? ;; ???
)

(define (a-noun)

??? ;; ???
)

(define (a-verb)

??? ;; ???
)

(define (an-adjective)

??? ;; ???
)

(define (an-adverb)

??? ;; ???
)

(define (pick-random lst)

(list-ref lst (random ??? )) ;; ???
)

(define (either a b)

(if (= (random 2) 0) (a) (b) )

)

(define noun-list (list ’dog ’cat ’student ’professor ’book ’computer))
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(define verb-list (list ’ran ’ate ’slept ’drank ’exploded ’decomposed))

(define adjective-list (list ’red ’slow ’dead ’pungent ’over-paid ’drunk))

(define adverb-list (list ’quickly ’slowly ’wickedly ’majestically))

You may want to define other procedures (“helpers”) in addition to these, for instance to
help you structure your program more clearly, or to abstract common operations. Feel free to
exercise your own judgement.
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Appendix B

SLLGEN

This appendix is a summary of the SLLGEN parsing system taken from Essentials of Pro-
gramming Languages Appendix B.1

In the following ‘list’ means a scheme list, and ‘atom’ means a scheme ‘symbol’ or atom
(a ‘quoted’ name).

B.1 Scanning

A scanner or lexer specification is a regular expression represented as a list of atoms given
by the following grammar:

scanner-spec ::= ( {regexp-and-action}∗ )

regexp-and-action ::= name ( {regexp}∗ )action
regexp ::= string | letter | digit | whitespace | any

| (not character ) | (or {regexp}∗)
| (arbno regexp ) | (concat {regexp}∗ )

action ::= skip | symbol | number | string
name ::= atom
string ::= a scheme string
character ::= a (unicode) character

The meaning and use of the terminal symbols (tokens) in this specification are explained
in EOPL Appendix B.

B.2 Parsing

A parser specification is a BNF grammar represented as a list of atoms given by the following
grammar:

grammar-spec ::= ( {production}∗ )

production ::= ( lhs ({rhs-item}∗ )prod-name
lhs ::= atom
rhs-item ::= atom | string

| (arbno {rhs-item}∗ )

| (separated-list {rhs-item}∗ string )

prod-name ::= atom

1Which you must read.
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The meaning and use of the (arbno ...) and (separated-list ...)) forms in this
specification are explained in EOPL Appendix B.

B.3 Generating scanners and parsers

There are several several procedures supplied that create scanners and parsers, and their
associated data-structures — see EOPL for details. If we assume that scanner-spec and
grammar-spec are lists of atoms that conform to the specifications in sections B.1 and B.2
respectively, then the two essential procedures are:

(sllgen:make-string-parser scanner-spec grammar-spec)

Returns a procedure which takes a single string argument (the program). The returned
procedure returns a data-structure representing the abstract syntax tree of the program,
or an error if the program argument is syntactically incorrect.

Errors are produced by sllgen:make-string-parser if there are syntax errors in either
of the two specifications.

(sllgen:make-define-datatypes scanner-spec grammar-spec)

This doesn’t actually return anything as such,2 rather it creates the define-datatype

see definitions — section ?? — implied by your scanner and parser specifications. These
definitions form the ‘glue’ which enables the scanner, parser and your own interpreter
function — section 2.1.2 to work together. The various Segments show how how this
all fits together.

Example

An example of using these three procedures is:

(define scanner ’( ... ) ) ; where ... conforms to the scanner grammar

(define parser ’( ... ) ) ; where ... conforms to the parser grammar

(sllgen:make-define-datatypes scanner parser) ;This is required!

(define scan&parse (sllgen:make-string-parser scanner parser))

Then, assuming you have implemented a (execute ...) function (section 2.1.2), evaluating
a scheme expression such as

(execute (scan&parse "-( 23, pi);"))

will check that the string -( 23, pi); is syntactically correct, and if it is will return the
meaning of the string interpreted according to your semantic specification.

2It is a macro which gets expanded (‘evaluated’) at compile-time. The define-datatype form is also a
macro.
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Appendix C

CORE skeletons

Skeleton files for CORE. This can also be found in:

/shared/rentedfs/cs-course/popl/Resources/Practicals/CurrentYear/CORE

syntax.scm

#lang eopl

(provide (all-defined-out))

;; Syntax for CORE

;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; ** Requires editing the ??? ** ;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;

; Lexical structure

(define the-lexical-spec

’(

(whitespace (whitespace) skip)

(number (???) number) ;; ???
)

)

; Grammar

(define the-grammar

’(

(program (expression) a-program)

(expression (number) const-exp)

(expression

("zero?" "(" expression ")") zero?-exp)

(expression

("-" "(" ??? ")") diff-exp) ;; ???
(expression

("if" ??? "then" ??? "else" ???) if-exp) ;; ???
)

)

;;;;;;;;;;;;;;;; sllgen boilerplate ;;;;;;;;;;;;;;;;

;; Evaluating the following is *required* to construct the

;; data-types from the lexer and parser specs.
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;; ... will be evaluated when this file is ’loaded’

(sllgen:make-define-datatypes the-lexical-spec the-grammar)

;; (scan&parse string) scans and parses the program represented

;; by the string argument. Produces an abstract syntax representation of

;; the program if no errors, which can be passed to (execute ...)

(define scan&parse

(sllgen:make-string-parser the-lexical-spec the-grammar))

;; Applies the scanner given by lexical-spce to a string ...

;; used to test scanners

(define just-scan

(sllgen:make-string-scanner the-lexical-spec the-grammar))

; (show-the-datatypes) displays the data-types created by the scanner

; and parser

(define (show-the-datatypes)

(sllgen:list-define-datatypes the-lexical-spec the-grammar))

tests.scm

#lang eopl

(require "syntax.scm")

;(require "driver.scm")

;(require "semantics.scm")

;(require "data-structures.scm")

;;

;

; CORE

;

(define ten "10") ;; 10

(define true "zero?(0)") ;; #t

(define nope! "zero?(10)") ;; #f

(define Hmm? "zero?(zero?(0))") ;; semantic error

(define HmHm! "-( 2, zero?(2))") ;; semantic error

(define e1 ;; 3

"if zero?( -( 2, 3) ) then 4 else -( 4, -(2,1))")

(define if1 ;; 2

"if zero?(1) then 10 else if zero?(1) then 1 else 2")

(define if2 ;; 398

"if zero?(1) then 10 else -( 400, if zero?(1) then 1 else 2)")

;

; ** Add more tests ***

driver.scm

#lang eopl

;; Loads all required pieces.

;; Provides the top-level (run ...) function

;;
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(require "data-structures.scm") ; for expval constructors

(require "syntax.scm") ; for scan&parse

(require "semantics.scm") ; for evaluate

;

(provide (all-defined-out))

;

;; run : String -> SchemeValue

(define (run string)

(<-ExpVal

(execute (scan&parse string))

)

)

data-types.scm

#lang eopl

(provide (all-defined-out))

;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; ** Requires editing the ??? ** ;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;

;;

;; Expressed Values for CORE

;; an expressed value is a number or a truth-value

;;

(define-datatype ExpVal ExpVal?

(number-ExpVal (a-number number?))

(bool-ExpVal (a-boolean ???)) ;; ???
)

;; Injection function for taking a scheme value into the set of Expressed Values

(define (->ExpVal x)

(cond

((number? x) (number-ExpVal x))

((boolean? x) ??? )

)

)

;;; Specific extractors:

; EOPL p70

; ExpVal->num : ExpVal -> number

(define (ExpVal->number v)

(cases ExpVal v

(number-ExpVal (s) s)

(else (ExpVal-extractor-error ’Number v))

)

)

; ExpVal->num : ExpVal -> truth-value
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(define (ExpVal->bool v)

(cases ExpVal v

(bool-ExpVal (s) s)

(else (ExpVal-extractor-error ’Boolean v))

)

)

;; Convenience function for translating an Expressed value into a scheme value

(define (<-ExpVal x)

(cases ExpVal x

(number-ExpVal ??? ???) ;; ???
(bool-ExpVal ??? ???) ;; ???

)

)

;;

(define (ExpVal-extractor-error variant value)

(eopl:error ’ExpVal-extractors "Looking for a s, found s"

variant value)

)

semantics.scm

#lang eopl

;; Semantic interpreter for CORE

(provide (all-defined-out))

(require "syntax.scm")

(require "data-structures.scm")

;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; ** Requires editing the ??? ** ;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;

;;

;; (execute ...) takes an abstract syntax representation of a program,

;; and returns its Expressed Value

;;

(define (execute prog)

(cases program prog

(a-program (exp) (value-of exp))

)

)

;;

;; (value-of ...) takes an abstract syntax representation of an expression

;; and returns its Expressed Value

;; ** Requires editing the ???s **

(define (value-of expr)

(cases expression expr

58



POPL Appendices

(const-exp (num) ??? ) ;; ???
(diff-exp (exp1 exp2)

(number-ExpVal (- ??? ???) ) ;; ???
)

(zero?-exp (exp)

(??? (zero? ???)) ;; ???
)

(if-exp (test true-exp false-exp)

(if (ExpVal->bool ???) ;; ???
??? ;; ???
??? ;; ???

)

)

)

)
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