
Segment 1 Solutions

Segment 1

Scheme

These solutions are essentially the code in the practical script’s Appendix, with the ???s filled
in.

Exercise 2 The top-level procedure needed to tack the word “the” on to the beginning of
the two phrases. However, we can’t just use ’the since it is being joined to the list produced
by the evaluation of (noun-phrase). The joining operation is append which joins lists. So
we need to specify a list containing the symbol the:

(define (sentence)

(append (append ’(the) (noun-phrase))

(verb-phrase)

)

)

Incidentally, we could have defined (sentence) slightly differently if we’d wanted to use
’the instead of ’(the):

(define (sentence)

(append (cons ’the (noun-phrase)) ;; Alternative definition
(verb-phrase)

)

)

�

Exercise 3 We want to pick an element between the first and last of lst. list-ref

numbers the elements of a list from 0 to l − 1, where l is the length of the list. (random n)

gives a number between 0 and n− 1, so the definition of pick-random just falls out:

(define (pick-random lst)

(list-ref lst (random (length lst)))

)

�

Exercise 4 With the above definitions, these are trivial!

(define (a-noun)

(list (pick-random noun-list)))

1

1.1. CARING Segment 1 Solutions

(define (a-verb)

(list (pick-random verb-list)))

�

Exercise 5 Since we’ve already got a procedure that evaluates one of two procedures at
random (either), noun-phrase and verb-phrase are direct translations of their definitions.

(define (noun-phrase)

(either a-noun an-adjectival-phrase)

)

(define (verb-phrase)

(either a-verb an-adverbal-phrase)

)

The use of the two ‘helper’, or subsidiary, procedures an-adjectival-phrase, and an-adverbal-phrase

simplify the noun-phrase and verb-phrase definitions — here we’re using abstraction yet
again to clarify the design. Notice how the recursion that arises from the definition of noun
phrase appears in the program — noun-phrase uses an-adjectival-phrase, and vice versa.
This is called mutual recursion.

(define (an-adjectival-phrase)

(cons (pick-random adjective-list) (noun-phrase))

)

(define (an-adverbal-phrase)

(append (a-verb) (list (pick-random adverb-list)))

)

The only difficulties you might have had with designing these procedures are likely to have
been with when and whether to use list. Check that you understand how and why this has
been used above.
�

1.1 Caring

I won’t repeat the code that was given in the practical, so I assume that you’re reading this
in conjunction with the practical script.

Exercise 10 This is just the hors d’oeuvres . . . there’s really not much to do here, but
I’ve done it all the same!

(define (qualifier)

(pick-random ’((you seem to think)

(you feel that)

(why do you believe)

2

Segment 1 Scheme Segment 1 Solutions

(why do you say)

(do you really feel that)

(do you believe other people would say that)

(how long have you felt that)

)))

(define (hedge)

(pick-random

’((please go on)

(many people have the same sorts of feelings)

(many of my patients have told me the same thing)

(please continue)

(that’s interesting)

(Hmmm)

(Uh-huh)

(that’s a really boring thought)

)))

�

Exercise 11 The modification to change-person is simple. However, as you will have
seen, there are problems when you try to use it.

(define (change-person phrase)

(many-replace ’((you i)

(i you)

(me you)

(am are)

(my your)

(you i) (you me) (are am) (your my))

phrase))

�

Exercise 12 So, why didn’t it work? There is a ‘bug’, but neither of the two procedures
(replace, and many-replace) are actually wrong. It’s just that together they don’t do what
we want!

The problem is that in the given arrangement, we are applying each replacement in turn
to all the elements of the list, when in fact we need to apply all replacements to each element
of the list in turn.

�

Exercise 13 There may be an elegant (and small) transformation from the given routines,
but I’m not sure what it is . . . hence the two redefinitions which are significantly different in
structure from the originals.

3

1.1. CARING Segment 1 Solutions

(define (replace replacements x) ;; replacements are (pat rep) pairs
(cond ((null? replacements) x)

((equal? (car (car replacements)) x) (cadr (car replacements)))

(else (replace (cdr replacements) x))

)

)

(define (many-replace replacements lst)

(if (null? lst) nil

(cons (replace replacements (car lst))

(many-replace replacements (cdr lst))

)

)

)

�

Exercise 14 We need to remember ‘state’ from loop to loop. The technique is to use
extra parameters in a similar way to making recursive processes into iterative ones. We need
to change reply so that it takes the list of previous responses as a parameter in order that
second part of the exercise can be accomplished.

(define (doctor-driver-loop name response-list)

(begin

(newline)

(display ’**)

(let ((user-response (read)))

(cond ((equal? user-response ’(goodbye))

(begin

(print (list ’goodbye name))

(print ’(see you next week)))

)

(else (begin

(print (reply user-response response-list))

(doctor-driver-loop name (cons user-response response-list))

)

)

)

)

)

)

And we therefore have to modify visit-doctor to reflect the new signature1 of doctor-driver-loop:

(define (visit-doctor name)

(begin

1That is, the number and type of parameters.

4

Segment 1 Scheme Segment 1 Solutions

(print (list ’hello name))

(print ’(what seems to be the trouble?))

(doctor-driver-loop name ’())))

The modification to reply is to use the given prob procedure to choose between the (now
three) ways of responding. However, we must change the definition of reply to include the
‘history’ of user responses. Care has to be taken to ensure that the “Earlier you said that”
response isn’t tried before the patient has made an earlier response (i.e. when history is
non-empty):

(define (reply user-response history)

(cond ((prob 1 2) (append (qualifier) (change-person user-response)))

((and (prob 1 5) (not (null? history)))

(append ’(earlier you said) (pick-random history)))

(else (hedge))))

�

Exercise 15 This only require a couple of mods to visit-doctor — firstly to call ask-patient-name
(in a let since we require the value in several places), then to check for the termination con-
dition,2 and finally to make the visit-doctor procedure into a loop.

(define (visit-doctor)

(let ((name (ask-patient-name)))

(if (eq? name ’AlanSugar) ’(time to go home)

(begin

(print (list ’hello name))

(print ’(what seems to be the trouble?))

(doctor-driver-loop name ’())

(visit-doctor)

))))

(define (ask-patient-name)

(begin

(print ’(next!))

(display ’(who are you?)) (display " ")

(car (read))))

�

2What an utterly appropriate turn of phrase!

5

1.1. CARING Segment 1 Solutions

Exercise 16
Since this is meant to be your own invention, I’ll leave this up to you. Let me know if you

come up with anything magnificent.
However, here’s the start of a solution to the first suggestion — you might like to take it

forward from here.

(define (reply user-response history)

(let ((key-list (key-words user-response)))

(cond ((and (prob 1 2) (not (null? key-list)))

(canned-response key-words)

)

((prob 1 2) (append (qualifier) (change-person user-response)))

((and (prob 1 5) (not (null? history)))

(append ’(earlier you said) (pick-random history)))

(else (hedge))

)

)

)

(define (key-words word-list)

’() ; stub ... do this yourself
)

(define (canned-response key-words)

’() ; stub ... ditto
)

(define response-list

’(

((depressed suicide)

((When you feel depressed, have a pizza at Caesars)

(depression is a disease that can be treated)

)

)

((mother father parents)

((tell me more about your parents)

(why do you feel that way about your parents?)

)

)

)

)

�

6

